Matching Items (3)
Filtering by

Clear all filters

151745-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states,

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
ContributorsJuday, Reid (Author) / Ponce, Fernando A. (Thesis advisor) / Drucker, Jeff (Committee member) / Mccartney, Martha R (Committee member) / Menéndez, Jose (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151454-Thumbnail Image.png
Description
Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures.

Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures. The emission characteristics are examined by cathodoluminescence spectroscopy and imaging, and are correlated with the structural and electrical properties studied by transmission electron microscopy and electron holography. Four major areas are covered in this dissertation, which are described next. The effect of strain on the emission characteristics in wurtzite GaN has been studied. The values of the residual strain in GaN epilayers with different dislocation densities are determined by x-ray diffraction, and the relationship between exciton emission energy and the in-plane residual strain is demonstrated. It shows that the emission energy increases withthe magnitude of the in-plane compressive strain. The temperature dependence of the emission characteristics in cubic GaN has been studied. It is observed that the exciton emission and donor-acceptor pair recombination behave differently with temperature. The donor-bound exciton binding energy has been measured to be 13 meV from the temperature dependence of the emission spectrum. It is also found that the ionization energies for both acceptors and donors are smaller in cubic compared with hexagonal structures, which should contribute to higher doping efficiencies. A comprehensive study on the structural and optical properties is presented for InGaN/GaN quantum wells emitting in the blue, green, and yellow regions of the electromagnetic spectrum. Transmission electron microscopy images indicate the presence of indium inhomogeneties which should be responsible for carrier localization. The temperature dependence of emission luminescence shows that the carrier localization effects become more significant with increasing emission wavelength. On the other hand, the effect of non-radiative recombination on luminescence efficiency also varies with the emission wavelength. The fast increase of the non-radiative recombination rate with temperature in the green emitting QWs contributes to the lower efficiency compared with the blue emitting QWs. The possible saturation of non-radiative recombination above 100 K may explain the unexpected high emission efficiency for the yellow emitting QWs Finally, the effects of InGaN underlayers on the electronic and optical properties of InGaN/GaN quantum wells emitting in visible spectral regions have been studied. A significant improvement of the emission efficiency is observed, which is associated with a blue shift in the emission energy, a reduced recombination lifetime, an increased spatial homogeneity in the luminescence, and a weaker internal field across the quantum wells. These are explained by a partial strain relaxation introduced by the InGaN underlayer, which is measured by reciprocal space mapping of the x-ray diffraction intensity.
ContributorsLi, Di (Author) / Ponce, Fernando (Thesis advisor) / Culbertson, Robert (Committee member) / Yu, Hongbin (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2012
156585-Thumbnail Image.png
Description
Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film morphology, especially in the industrially preferred cold wall CVD, has not been undertaken previously. This research endeavored to address this

Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film morphology, especially in the industrially preferred cold wall CVD, has not been undertaken previously. This research endeavored to address this and provide comprehensive insight into the growth physics of graphene on supported solid and liquid Cu films using cold wall CVD.

A multi-chamber UHV system was customized and transformed into a cold wall CVD system to perform experiments. The versatile growth process was completely custom-automated by controlling the process parameters with LabVIEW. Graphene growth was explored on solid electrodeposited, recrystallized and thin sputter deposited Cu films as well as on liquid Cu supported on W/Mo refractory substrates under ambient pressure using Ar, H₂ and CH₄ mixtures.

The results indicate that graphene grown on Cu films using cold wall CVD follows a classical two-dimensional nucleation and growth mechanism. The nucleation density decreases and average size of graphene crystallites increases with increasing dilution of the CH₄/H₂ mixture by Ar, decrease in total flow rate and decrease in CH₄:H₂ ratio at a fixed substrate temperature and chamber pressure. Thus, the resulting morphological changes correspond with those that would be expected if the precursor deposition rate was varied at a fixed substrate temperature for physical deposition using thermal evaporation. The evolution of graphene crystallite boundary morphology with decreasing effective C deposition rate indicates the effect of edge diffusion of C atoms along the crystallite boundaries, in addition to H₂ etching, on graphene crystallite shape.

The roles of temperature gradient, chamber pressure and rapid thermal heating in C precursor-rich environment on graphene growth morphology on thin sputtered Cu films were explained. The growth mechanisms of graphene on substrates annealed under reducing and non-reducing environment were explained from the scaling functions of graphene island size distribution in the pre-coalescence regime. It is anticipated that applying the pre-coalescence size distribution method presented in this work to other 2D material systems may be useful for elucidating atomistic mechanisms of film growth that are otherwise difficult to obtain.
ContributorsDas, Shantanu, Ph.D (Author) / Drucker, Jeff (Thesis advisor) / Alford, Terry (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2018