Matching Items (2)
Filtering by

Clear all filters

155877-Thumbnail Image.png
Description
Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe nanowires (NWs) that are synthesized

through a simple vapor-liquid-solid (VLS) method. By controlling the presence or

the absence of Au catalysts and controlling the growth parameters such as growth

temperature, various growth morphologies of ZnTe, such as thin films and nanowires

can be obtained. The characterization of the ZnTe nanostructures and films was

performed using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy

(EDX), high- resolution transmission electron microscope (HRTEM), X-ray

diffraction (XRD), photoluminescence (PL), Raman spectroscopy and light scattering

measurement. After confirming the crystal purity of ZnTe, two-terminal diodes and

three-terminal transistors were fabricated with both nanowire and planar nano-sheet

configurations, in order to correlate the nanostructure geometry to device performance

including field effect mobility, Schottky barrier characteristics, and turn-on

characteristics. Additionally, optoelectronic properties such as photoconductive gain

and responsivity were compared against morphology. Finally, ZnTe was explored in

conjunction with ZnO in order to form type-II band alignment in a core-shell nanostructure.

Various characterization techniques including scanning electron microscopy,

energy-dispersive X-ray spectroscopy , x-ray diffraction, Raman spectroscopy, UV-vis

reflectance spectra and photoluminescence were used to investigate the modification

of ZnO/ZnTe core/shell structure properties. In PL spectra, the eliminated PL intensity

of ZnO wires is primarily attributed to the efficient charge transfer process

occurring between ZnO and ZnTe, due to the band alignment in the core/shell structure. Moreover, the result of UV-vis reflectance spectra corresponds to the band

gap energy of ZnO and ZnTe, respectively, which confirm that the sample consists of

ZnO/ZnTe core/shell structure of good quality.
ContributorsPeng, Jhih-hong (Author) / Yu, Hongbin (Thesis advisor) / Roedel, Ronald (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
158558-Thumbnail Image.png
Description
This dissertation covers my doctoral research on the cathodoluminescence (CL) study of the optical properties of III-niride semiconductors.

The first part of this thesis focuses on the optical properties of Mg-doped gallium nitride (GaN:Mg) epitaxial films. GaN is an emerging material for power electronics, especially for high power and high

This dissertation covers my doctoral research on the cathodoluminescence (CL) study of the optical properties of III-niride semiconductors.

The first part of this thesis focuses on the optical properties of Mg-doped gallium nitride (GaN:Mg) epitaxial films. GaN is an emerging material for power electronics, especially for high power and high frequency applications. Compared to traditional Si-based devices, GaN-based devices offer superior breakdown properties, faster switching speed, and reduced system size. Some of the current device designs involve lateral p-n junctions which require selective-area doping. Dopant distribution in the selectively-doped regions is a critical issue that can impact the device performance. While most studies on Mg doping in GaN have been reported for epitaxial grown on flat c-plane substrates, questions arise regarding the Mg doping efficiency and uniformity in selectively-doped regions, where growth on surfaces etched away from the exact c-plane orientation is involved. Characterization of doping concentration distribution in lateral structures using secondary ion mass spectroscopy lacks the required spatial resolution. In this work, visualization of acceptor distribution in GaN:Mg epilayers grown by metalorganic chemical vapor deposition (MOCVD) was achieved at sub-micron scale using CL imaging. This was enabled by establishing a correlation among the luminescence characteristics, acceptor concentration, and electrical conductivity of GaN:Mg epilayers. Non-uniformity in acceptor distribution has been observed in epilayers grown on mesa structures and on miscut substrates. It is shown that non-basal-plane surfaces, such as mesa sidewalls and surface step clusters, promotes lateral growth along the GaN basal planes with a reduced Mg doping efficiency. The influence of surface morphology on the Mg doping efficiency in GaN has been studied.

The second part of this thesis focuses on the optical properties of InGaN for photovoltaic applications. The effects of thermal annealing and low energy electron beam irradiation (LEEBI) on the optical properties of MOCVD-grown In0.14Ga0.86N films were studied. A multi-fold increase in luminescence intensity was observed after 800 °C thermal annealing or LEEBI treatment. The mechanism leading to the luminescence intensity increase has been discussed. This study shows procedures that significantly improve the luminescence efficiency of InGaN, which is important for InGaN-based optoelectronic devices.
ContributorsLiu, Hanxiao (Author) / Ponce, Fernando A. (Thesis advisor) / Zhao, Yuji (Committee member) / Newman, Nathan (Committee member) / Fischer, Alec M (Committee member) / Arizona State University (Publisher)
Created2020