Matching Items (2)
Filtering by

Clear all filters

152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
152338-Thumbnail Image.png
Description
The increased emphasis on the detrimental effects of the production of construction materials such as ordinary portland cement (OPC) have driven studies of the alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts. They have been extensively studied due to the advantages they offer in terms of

The increased emphasis on the detrimental effects of the production of construction materials such as ordinary portland cement (OPC) have driven studies of the alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts. They have been extensively studied due to the advantages they offer in terms of enhanced material properties, while increasing sustainability by the reuse of industrial waste and reducing the adverse impacts of OPC production. Ground granulated blast furnace slag is one of the commonly used materials for their content of calcium and silica species. Alkaline activators such as silicates, aluminates etc. are generally used. These materials undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification under the influence of alkaline activators. Exhaustive studies exploring the effects of sodium silicate as an activator however there is a significant lack of work on exploring the effect of the cation and the effect of liquid and powder activators. The focus of this thesis is hence segmented into two topics: (i) influence of liquid Na and K silicate activators to explore the effect of silicate and hydroxide addition and (ii) influence of powder Na and K Silicate activators to explore the effect of cation, concentration and silicates. Isothermal calorimetric studies have been performed to evaluate the early hydration process, and to understand the reaction kinetics of the liquid and powder alkali activated systems. The reaction kinetics had an impact on the early age behavior of these binders which can be explained by the compressive strength results. It was noticed that the concentration and silica modulus of the activator had a greater influence than the cation over the compressive strength. Quantification of the hydration products resultant from these systems was performed via thermo gravimetric analysis (TGA). The difference in the reaction products formed with varying cation and silicate addition in these alkali activated systems is brought out. Fourier transform infrared (FTIR) spectroscopy was used to investigate the degree of polymerization achieved in these systems. This is indicative of silica and alumina bonds in the system. Differences in the behavior of the cation are attributable to size of the hydration sphere and polarizing effect of the cation which are summarized at the end of the study.
ContributorsDakhane, Akash (Author) / Neithalath, Narayanan (Thesis advisor) / Subramaniam, Dharmarajan (Committee member) / Mobashar, Barzin (Committee member) / Arizona State University (Publisher)
Created2013