Matching Items (2)

151356-Thumbnail Image.png

Investigation of Star Formation: Instrumentation and Methodology

Description

A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and

A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of heavily obscured stellar nurseries to observe star formation in its infancy. Ultra-violet observations allow one to observe stars just after they emerge from their surrounding environment, allowing higher energy radiation to escape. To make detailed observations of early stage star formation in both spectral regimes requires state-of-the-art detector technology and instrumentation. In this dissertation, I discuss the calibration and feasibility of detectors developed by Lawrence Berkeley National Laboratory and specially processed at the Jet Propulsion Laboratory to increase their quantum efficiency at far-ultraviolet wavelengths. A cursory treatment of the delta-doping process is presented, followed by a thorough discussion of calibration procedures developed at JPL and in the Laboratory for Astronomical and Space Instrumentation at ASU. Subsequent discussion turns to a novel design for a Modular Imager Cell forming one possible basis for construction of future large focal plane arrays. I then discuss the design, fabrication, and calibration of a sounding rocket imaging system developed using the MIC and these specially processed detectors. Finally, I discuss one scientific application of sub-mm observations. I used data from the Heinrich Hertz Sub-millimeter Telescope and the Sub-Millimeter Array (SMA) to observe sub-millimeter transitions and continuum emission towards AFGL 2591. I tested the use of vibrationally excited HCN emission to probe the protostellar accretion disk structure. I measured vibrationally excited HCN line ratios in order to elucidate the appropriate excitation mechanism. I find collisional excitation to be dominant, showing the emission originates in extremely dense (n&sim10;11 cm-3), warm (T&sim1000; K) gas. Furthermore, from the line profile of the v=(0, 22d, 0) transition, I find evidence for a possible accretion disk.

Contributors

Agent

Created

Date Created
  • 2012

155481-Thumbnail Image.png

Implementation of emerging technologies: treatment capability of peracetic acid and ultraviolet irradiation

Description

Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic

Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic acid (PAA) upstream of an ultraviolet (UV) irradiation reactor. Two studies were conducted, one in pilot-scale field conditions and another under laboratory conditions. A pilot-scale NeoTech UV reactor (rated for 375 GPM) was used in the pilot study, where a smaller version of this unit was used in the laboratory study (20 to 35 GPM). The pilot study analyzed coliform disinfection and also monitored water quality parameters including UV transmittance (UVT), pH and chlorine residual. Pilot study UV experiments indicate the unit is effectively treating flow streams (>6 logs total coliforms) twice the 95% UVT unit capacity (750 GPM or 17 mJ/cm2 UV Dose). The results were inconclusive on PAA/UV inactivation due to high data variability and field operation conditions creating low inlet concentrations.Escherichia coli (E. coli) bacteria and the enterobacteria phage P22—a surrogate for enteric viruses—were analyzed. UV inactivated >7.9 and 4 logs of E. coli and P22 respectively at a 16.8 mJ/cm2 UV dose in test water containing a significant organics concentration. When PAA doses of 0.25 and 0.5 mg/L were injected upstream of UV at approximately the same UV Dose, the average E.coli log inactivation increased to >8.9 and >9 logs respectively, but P22 inactivation decreased to 2.9 and 3.0 logs, respectively. A bench-scale study with PAA was also conducted for 5, 10 and 30 minutes of contact time, where 0.25 and 0.5 mg/L had <1 log inactivation of E. coli and P22 after 30 minutes of contact time. In addition, degradation of the chemical N-Nitrosodimethylamine (NDMA) in tap water was analyzed, where UV degraded NDMA by 48 to 97% for 4 and 0.5 GPM flowrates, respectively. Adding 0.5 mg/L PAA upstream of UV did not significantly improve NDMA degradation.

The results under laboratory conditions indicate that PAA/UV have synergy in the inactivation of bacteria, but decrease virus inactivation. In addition, the pilot study demonstrates the applicability of the technology for full scale operation.

Contributors

Agent

Created

Date Created
  • 2017