Matching Items (4)
Filtering by

Clear all filters

151321-Thumbnail Image.png
Description
This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance

This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance at a functional target feature, such as at the blades that must be controlled. The first part of this thesis relates the limits of location for the target part to geometric imperfections of other parts when stacked-up in parallel paths. In this section parts are considered to be rigid (non-deformable). By understanding how much of variation from the supporting parts contribute to variations of the target feature, a designer can better utilize the tolerance budget when assigning values to individual tolerances. In this work, the T-Map®, a spatial math model is used to model the tolerance accumulation in parallel assemblies. In other applications where parts are flexible, deformations are induced when parts in parallel are clamped together during assembly. Presuming that perfectly manufactured parts have been designed to fit perfectly together and produce zero deformations, the clamping-induced deformations result entirely from the imperfect geometry that is produced during manufacture. The magnitudes and types of these deformations are a function of part dimensions and material stiffnesses, and they are limited by design tolerances that control manufacturing variations. These manufacturing variations, if uncontrolled, may produce high enough stresses when the parts are assembled that premature failure can occur before the design life. The last part of the thesis relates the limits on the largest von Mises stress in one part to functional tolerance limits that must be set at the beginning of a tolerance analysis of parts in such an assembly.
ContributorsJaishankar, Lupin Niranjan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Mignolet, Marc P (Committee member) / Arizona State University (Publisher)
Created2012
153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
154942-Thumbnail Image.png
Description
Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification

Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification can be separated into two major tasks; tolerance schema generation and tolerance value specification. This thesis will focus on the latter part of automated tolerance specification, namely tolerance value allocation and analysis. The tolerance schema (sans values) required prior to these tasks have already been generated by the auto-tolerancing software. This information is communicated through a constraint tolerance feature graph file developed previously at Design Automation Lab (DAL) and is consistent with ASME Y14.5 standard.

The objective of this research is to allocate tolerance values to ensure that the assemblability conditions are satisfied. Assemblability refers to “the ability to assemble/fit a set of parts in specified configuration given a nominal geometry and its corresponding tolerances”. Assemblability is determined by the clearances between the mating features. These clearances are affected by accumulation of tolerances in tolerance loops and hence, the tolerance loops are extracted first. Once tolerance loops have been identified initial tolerance values are allocated to the contributors in these loops. It is highly unlikely that the initial allocation would satisfice assemblability requirements. Overlapping loops have to be simultaneously satisfied progressively. Hence, tolerances will need to be re-allocated iteratively. This is done with the help of tolerance analysis module.

The tolerance allocation and analysis module receives the constraint graph which contains all basic dimensions and mating constraints from the generated schema. The tolerance loops are detected by traversing the constraint graph. The initial allocation distributes the tolerance budget computed from clearance available in the loop, among its contributors in proportion to the associated nominal dimensions. The analysis module subjects the loops to 3D parametric variation analysis and estimates the variation parameters for the clearances. The re-allocation module uses hill climbing heuristics derived from the distribution parameters to select a loop. Re-allocation Of the tolerance values is done using sensitivities and the weights associated with the contributors in the stack.

Several test cases have been run with this software and the desired user input acceptance rates are achieved. Three test cases are presented and output of each module is discussed.
ContributorsBiswas, Deepanjan (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
154976-Thumbnail Image.png
Description
Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of

Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of points measured on each cast part. For the first, a CAD model of the finished part is required to be communicated to the machine shop for performing various machining operations on the metal casting. The data flow must include GD&T specifications along with other special notes that may be required to communicate to the machinist. Current data exchange, among various digital applications, is limited to translation of only CAD geometry via STEP AP203. Therefore, an algorithm is developed in order to read, store and translate the data from a CAD file (for example SolidWorks, CREO) to a standard and machine readable format (ACIS format - *.sat). Second, the geometry of cast parts varies from piece to piece and hence fixture set-up parameters for each part must be adjusted individually. To predictively determine these adjustments, the datum surfaces, and to-be-machined surfaces are scanned individually and the point clouds reduced to feature fits. The scanned data are stored as separate point cloud files. The labels associated with the datum and to-be-machined (TBM) features are extracted from the *.sat file. These labels are further matched with the file name of the point cloud data to identify data for the respective features. The point cloud data and the CAD model are then used to fit the appropriate features (features at maximum material condition (MMC) for datums and features at least material condition (LMC) for TBM features) using the existing normative feature fitting (nFF) algorithm. Once the feature fitting is complete, a global datum reference frame (GDRF) is constructed based on the locating method that will be used to machine the part. The locating method is extracted from a fixture library that specifies the type of fixturing used to machine the part. All entities are transformed from its local coordinate system into the GDRF. The nominal geometry, fitted features, and the GD&T information are then stored in a neutral file format called the Constraint Tolerance Feature (CTF) Graph. The final outputs are then used to identify the locations of the critical features on each part and these are used to establish the adjustments for its setup prior to machining, in another module, not part of this thesis.
ContributorsRamnath, Satchit (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2016