Matching Items (3)
Filtering by

Clear all filters

151252-Thumbnail Image.png
Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
ContributorsSivakumar, Balasubramanian (Author) / Farahani, Bahar Jalali (Thesis advisor) / Garrity, Douglas (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
156292-Thumbnail Image.png
Description
The objective of this work is to design a low-profile compact Terahertz (THz) imaging system that can be installed in portable devices, unmanned aerial vehicles (UAVs), or CubeSats. Taking advantage of the rotational motion of these platforms, one can use linear antennas, such as leaky-wave antennas or linear phased arrays,

The objective of this work is to design a low-profile compact Terahertz (THz) imaging system that can be installed in portable devices, unmanned aerial vehicles (UAVs), or CubeSats. Taking advantage of the rotational motion of these platforms, one can use linear antennas, such as leaky-wave antennas or linear phased arrays, to achieve fast image acquisition using simple RF front-end topologies. The proposed system relies on a novel image reconstructing technique that uses the principles of computerized tomography (Fourier-slice theorem). It can be implemented using a rotating antenna that produces a highly astigmatic fan-beam. In this work, the imaging system is composed of a linear phased antenna array with a highly directive beam pattern in the E-plane allowing for high spatial resolution imaging. However, the pattern is almost omnidirectional in the H-plane and extends beyond the required field-of-view (FOV). This is a major drawback as the scattered signals from any interferer outside the FOV will still be received by the imaging aperture and cause distortion in the reconstructed image. Also, fan beams exhibit significant distortion (curvature) when tilted at large angles, thus introducing errors in the final image due to its failure to achieve the assumed reconstructing algorithm.

Therefore, a new design is proposed to alleviate these disadvantages. A 14×64 elements non-uniform array with an optimal flat-top pattern is designed with an iterative process using linear perturbation of a close starting pattern until the desired pattern is acquired. The principal advantage of this design is that it restricts the radiated/received power into the required FOV. As a result, a significant enhancement in the quality of images is achieved especially in the mitigation of the effect of any interferer outside the FOV. In this report, these two designs are presented and compared in terms of their imaging efficiency along with a series of numerical results verifying the proof of concept.
ContributorsSakr, Mahmoud (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2018
157812-Thumbnail Image.png
Description
The objective of this work is to design a novel method for imaging targets and scenes which are not directly visible to the observer. The unique scattering properties of terahertz (THz) waves can turn most building surfaces into mirrors, thus allowing someone to see around corners and various occlusions. In

The objective of this work is to design a novel method for imaging targets and scenes which are not directly visible to the observer. The unique scattering properties of terahertz (THz) waves can turn most building surfaces into mirrors, thus allowing someone to see around corners and various occlusions. In the visible regime, most surfaces are very rough compared to the wavelength. As a result, the spatial coherency of reflected signals is lost, and the geometry of the objects where the light bounced on cannot be retrieved. Interestingly, the roughness of most surfaces is comparable to the wavelengths at lower frequencies (100 GHz – 10 THz) without significantly disturbing the wavefront of the scattered signals, behaving approximately as mirrors. Additionally, this electrically small roughness is beneficial because it can be used by the THz imaging system to locate the pose (location and orientation) of the mirror surfaces, thus enabling the reconstruction of both line-of-sight (LoS) and non-line-of-sight (NLoS) objects.

Back-propagation imaging methods are modified to reconstruct the image of the 2-D scenario (range, cross-range). The reflected signal from the target is collected using a SAR (Synthetic Aperture Radar) set-up in a lab environment. This imaging technique is verified using both full-wave 3-D numerical analysis models and lab experiments.

The novel imaging approach of non-line-of-sight-imaging could enable novel applications in rescue and surveillance missions, highly accurate localization methods, and improve channel estimation in mmWave and sub-mmWave wireless communication systems.
ContributorsDoddalla, Sai Kiran kiran (Author) / Trichopoulos, George (Thesis advisor) / Alkhateeb, Ahmed (Committee member) / Zeinolabedinzadeh, Saeed (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2019