Matching Items (2)
Filtering by

Clear all filters

151252-Thumbnail Image.png
Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
ContributorsSivakumar, Balasubramanian (Author) / Farahani, Bahar Jalali (Thesis advisor) / Garrity, Douglas (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
157674-Thumbnail Image.png
Description
State-of-the-art automotive radars use multi-chip Frequency Modulated Continuous Wave (FMCW) radars to sense the environment around the car. FMCW radars are prone to interference as they operate over a narrow baseband bandwidth and use similar radio frequency (RF) chirps among them. Phase Modulated Continuous Wave radars (PMCW) are robust and

State-of-the-art automotive radars use multi-chip Frequency Modulated Continuous Wave (FMCW) radars to sense the environment around the car. FMCW radars are prone to interference as they operate over a narrow baseband bandwidth and use similar radio frequency (RF) chirps among them. Phase Modulated Continuous Wave radars (PMCW) are robust and insensitive to interference as they transmit signals over a wider bandwidth using spread spectrum technique. As more and more cars are equipped with FMCW radars illuminate the same environment, interference would soon become a serious issue. PMCW radars can be an effective solution to interference in the noisy FMCW radar environment. PMCW radars can be implemented in silicon as System-on-a-chip (SoC), suitable for Multiple-Input-Multiple-Output (MIMO) implementation and is highly programmable. PMCW radars do not require highly linear high frequency chirping oscillators thus reducing the size of the final solution.

This thesis aims to present a behavior model for this promising Digitally modulated radar (DMR) transceiver in Simulink/Matlab. The goal of this work is to create a model for the electronic system level framework that simulates the entire system with non-idealities. This model includes a Top Down Design methodology to understand the requirements of the individual modules’ performance and thus derive the specifications for implementing the real chip. Back annotation of the actual electrical modules’ performance to the model closes the design process loop. Using Simulink’s toolboxes, a passband and equivalent baseband model of the system is built for the transceiver with non-idealities of the components built in along with signal processing routines in Matlab. This model provides a platform for system evaluation and simulation for various system scenarios and use-cases of sensing using the environment around a moving car.
ContributorsKalyan, Prassana (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Thesis advisor) / Garrity, Douglas (Committee member) / Arizona State University (Publisher)
Created2019