Matching Items (4)
151167-Thumbnail Image.png
Description
A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics

A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics involved in intraguild predation (IGP), a three species subsystem involving both competition and predation. A mathematical model is derived using differential equations based on pre-existing models to accurately predict species behavior. Analyses provide sufficient conditions for species persistence and extinction that can be used to explain global dynamics. Dynamics are compared for two separate models, one involving a specialist predator and the second involving a generalist predator, where systems involving a specialist predator are prone to unstable dynamics. Analyses have implications in biological conservation tactics including various methods of prevention and preservation. Simulations are used to compare dynamics between models involving continuous time and those involving discrete time. Furthermore, we derive a semi-discrete model that utilizes both continuous and discrete time series dynamics. Simulations imply that Holling's Type III functional response controls the potential for three species persistence. Complicated dynamics govern the IGP subsystem involving the white-footed mouse, gypsy moth, and oak, and they ultimately cause the synchronized defoliation of forests across the Northeastern United States. Acorn mast seasons occur every 4-5 years, and they occur simultaneously across a vast geographic region due to universal cues. Research confirms that synchronization can be transferred across trophic levels to explain how this IGP system ultimately leads to gypsy moth outbreaks. Geographically referenced data is used to track and slow the spread of gypsy moths further into the United States. Geographic Information Systems (GIS) are used to create visual, readily accessible, displays of trap records, defoliation frequency, and susceptible forest stands. Mathematical models can be used to explain both changes in population densities and geographic movement. Analyses utilizing GIS softwares offer a different, but promising, way of approaching the vast topic of conservation biology. Simulations and maps are produced that can predict the effects of conservation efforts.
ContributorsWedekin, Lauren (Author) / Kang, Yun (Thesis advisor) / Green, Douglas (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2012
156200-Thumbnail Image.png
Description
Modern, advanced statistical tools from data mining and machine learning have become commonplace in molecular biology in large part because of the “big data” demands of various kinds of “-omics” (e.g., genomics, transcriptomics, metabolomics, etc.). However, in other fields of biology where empirical data sets are conventionally smaller, more

Modern, advanced statistical tools from data mining and machine learning have become commonplace in molecular biology in large part because of the “big data” demands of various kinds of “-omics” (e.g., genomics, transcriptomics, metabolomics, etc.). However, in other fields of biology where empirical data sets are conventionally smaller, more traditional statistical methods of inference are still very effective and widely used. Nevertheless, with the decrease in cost of high-performance computing, these fields are starting to employ simulation models to generate insights into questions that have been elusive in the laboratory and field. Although these computational models allow for exquisite control over large numbers of parameters, they also generate data at a qualitatively different scale than most experts in these fields are accustomed to. Thus, more sophisticated methods from big-data statistics have an opportunity to better facilitate the often-forgotten area of bioinformatics that might be called “in-silicomics”.

As a case study, this thesis develops methods for the analysis of large amounts of data generated from a simulated ecosystem designed to understand how mammalian biomechanics interact with environmental complexity to modulate the outcomes of predator–prey interactions. These simulations investigate how other biomechanical parameters relating to the agility of animals in predator–prey pairs are better predictors of pursuit outcomes. Traditional modelling techniques such as forward, backward, and stepwise variable selection are initially used to study these data, but the number of parameters and potentially relevant interaction effects render these methods impractical. Consequently, new modelling techniques such as LASSO regularization are used and compared to the traditional techniques in terms of accuracy and computational complexity. Finally, the splitting rules and instances in the leaves of classification trees provide the basis for future simulation with an economical number of additional runs. In general, this thesis shows the increased utility of these sophisticated statistical techniques with simulated ecological data compared to the approaches traditionally used in these fields. These techniques combined with methods from industrial Design of Experiments will help ecologists extract novel insights from simulations that combine habitat complexity, population structure, and biomechanics.
ContributorsSeto, Christian (Author) / Pavlic, Theodore (Thesis advisor) / Li, Jing (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2018
155952-Thumbnail Image.png
Description
Foraging strategies in social animals are often shaped by change in an organism's natural surrounding. Foraging behavior can hence be highly plastic, time, and condition dependent. The motivation of my research is to explore the effects of dispersal behavior in predators or parasites on population dynamics in heterogeneous environments

Foraging strategies in social animals are often shaped by change in an organism's natural surrounding. Foraging behavior can hence be highly plastic, time, and condition dependent. The motivation of my research is to explore the effects of dispersal behavior in predators or parasites on population dynamics in heterogeneous environments by developing varied models in different contexts through closely working with ecologists. My models include Ordinary Differential Equation (ODE)-type meta population models and Delay Differential Equation (DDE) models with validation through data. I applied dynamical theory and bifurcation theory with carefully designed numerical simulations to have a better understanding on the profitability and cost of an adaptive dispersal in organisms. My work on the prey-predator models provide important insights on how different dispersal strategies may have different impacts on the spatial patterns and also shows that the change of dispersal strategy in organisms may have stabilizing or destabilizing effects leading to extinction or coexistence of species. I also develop models for honeybee population dynamics and its interaction with the parasitic Varroa mite. At first, I investigate the effect of dispersal on honeybee colonies under infestation by the Varroa mites. I then provide another single patch model by considering a stage structure time delay system from brood to adult honeybee. Through a close collaboration with a biologist, a honeybee and mite population data was first used to validate my model and I estimated certain unknown parameters by utilizing least square Monte Carlo method. My analytical, bifurcations, sensitivity analysis, and numerical studies first reveal the dynamical outcomes of migration. In addition, the results point us in the direction of the most sensitive life history parameters affecting the population size of a colony. These results provide novel insights on the effects of foraging and Varroa mites on colony survival.
ContributorsMessan, Komi Segno (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Degrandi-Hoffman, Gloria D (Committee member) / Janssen, Marco A (Committee member) / Arizona State University (Publisher)
Created2017
155408-Thumbnail Image.png
Description
Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$

Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$ has $p\in(0,1)$,

cause unconditional host extinction,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction. The case of non-extinction in upper

density-dependent

incidences extends to the case where a latent period is included.

Using data from experiments with rhanavirus and salamanders,

maximum likelihood estimates are applied to the data.

With these estimates,

I generate the corrected Akaike information criteria, which

reward a low likelihood and punish the use of more parameters.

This generates the Akaike weight, which is used to fit

parameters to the data, and determine which incidence functions

fit the data the best.

From an endemic perspective, I observe

that power incidences cause initial condition dependent host extinction for

some parameter constellations and global stability for others,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction.

The dynamics when the incidence function is homogeneous are deeply explored.

I expand the endemic considerations in the homogeneous case

by adding a predator into the model.

Using persistence theory, I show the conditions for the persistence of each of the

predator, prey, and parasite species. Potential dynamics of the system include parasite mediated

persistence of the predator, survival of the ecosystem at high initial predator levels and

ecosystem collapse at low initial predator levels, persistence of all three species, and much more.
ContributorsFarrell, Alexander E. (Author) / Thieme, Horst R (Thesis advisor) / Smith, Hal (Committee member) / Kuang, Yang (Committee member) / Tang, Wenbo (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2017