Matching Items (2)
Filtering by

Clear all filters

151146-Thumbnail Image.png
Description
Modern day driving continues to burgeon with attention detractors found inside and outside drivers' vehicles (e.g. cell phones, other road users, etc.). This study explores a regularly disregarded attention detractor experienced by drivers: self-regulation. Results suggest self-regulation and WMC has the potential to affect attentional control, producing maladaptive changes in

Modern day driving continues to burgeon with attention detractors found inside and outside drivers' vehicles (e.g. cell phones, other road users, etc.). This study explores a regularly disregarded attention detractor experienced by drivers: self-regulation. Results suggest self-regulation and WMC has the potential to affect attentional control, producing maladaptive changes in driving performance in maximum speed, acceleration, and time headway.
ContributorsSinocruz, Jerome Q (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russel J (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2012
157284-Thumbnail Image.png
Description
Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research

Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research it was defined as off task thoughts that occur due to the task not requiring full cognitive capacity. Drivers were asked to operate a driving simulator and follow audio turn by turn directions while experiencing each of three cell phone notification levels: Control (no texts), Airplane (texts with no notifications), and Ringer (audio notifications). Measures of Brake Reaction Time, Headway Variability, and Average Speed were used to operationalize driver distraction. Drivers experienced higher Brake Reaction Time and Headway Variability with a lower Average Speed in both experimental conditions when compared to the Control Condition. This is consistent with previous research in the field of implying a distracted state. Oculomotor movement was measured as the percent time the participant was looking at the road. There was no significant difference between the conditions in this measure. The results of this research indicate that not, while not interacting with a cell phone, no audio notification is required to induce a state of distraction. This phenomenon was unable to be linked to mind-wandering.
ContributorsRadina, Earl (Author) / Gray, Robert (Thesis advisor) / Chiou, Erin (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019