Matching Items (2)
Filtering by

Clear all filters

151146-Thumbnail Image.png
Description
Modern day driving continues to burgeon with attention detractors found inside and outside drivers' vehicles (e.g. cell phones, other road users, etc.). This study explores a regularly disregarded attention detractor experienced by drivers: self-regulation. Results suggest self-regulation and WMC has the potential to affect attentional control, producing maladaptive changes in

Modern day driving continues to burgeon with attention detractors found inside and outside drivers' vehicles (e.g. cell phones, other road users, etc.). This study explores a regularly disregarded attention detractor experienced by drivers: self-regulation. Results suggest self-regulation and WMC has the potential to affect attentional control, producing maladaptive changes in driving performance in maximum speed, acceleration, and time headway.
ContributorsSinocruz, Jerome Q (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russel J (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2012
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017