Matching Items (1)
Filtering by

Clear all filters

154835-Thumbnail Image.png
Description
Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should be performed on-line to not affect the normal operation of the device. Identifying the parameters of the system is essential to design and tune an adaptive proportional-integral-derivative (PID) controller.

Three techniques were used to design the PID controller. Phase and gain margin still prevails as one of the easiest methods to design controllers. Pole-zero cancellation is another technique which is based on pole-placement. However, although these controllers can be easily designed, they did not provide the best response compared to the Frequency Loop Shaping (FLS) technique. Therefore, since FLS showed to have a better frequency and time responses compared to the other two controllers, it was selected to perform the adaptation of the system.

An on-line system identification process was performed for the buck converter using indirect adaptation and the least square algorithm. The estimation error and the parameter error were computed to determine the rate of convergence of the system. The indirect adaptation required about 2000 points to converge to the true parameters prior designing the controller. These results were compared to the adaptation executed using robust stability condition (RSC) and a switching controller. Two different scenarios were studied consisting of five plants that defined the percentage of deterioration of the capacitor and inductor within the buck converter. The switching logic did not always select the optimal controller for the first scenario because the frequency response of the different plants was not significantly different. However, the second scenario consisted of plants with more noticeable different frequency responses and the switching logic selected the optimal controller all the time in about 500 points. Additionally, a disturbance was introduced at the plant input to observe its effect in the switching controller. However, for reasonable low disturbances no change was detected in the proper selection of controllers.
ContributorsSerrano Rodriguez, Victoria Melissa (Author) / Tsakalis, Konstantinos (Thesis advisor) / Bakkaloglu, Bertan (Thesis advisor) / Rodriguez, Armando (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016