Matching Items (6)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
155703-Thumbnail Image.png
Description
This thesis presents a power harvesting system combining energy from sub-cells of

multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost

converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current

regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A

modified hill-climbing algorithm is implemented to achieve maximum

This thesis presents a power harvesting system combining energy from sub-cells of

multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost

converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current

regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A

modified hill-climbing algorithm is implemented to achieve maximum power point

tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V

output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of

65mW. Measured results show that the peak efficiency achieved is around 85%. The

power switches and control circuits are implemented in standard 0.18um CMOS process.
ContributorsPeng, Qirong (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017
151580-Thumbnail Image.png
Description
Mobile electronic devices such as smart phones, netbooks and tablets have seen increasing demand in recent years, and so has the need for efficient, responsive and small power management solutions that are integrated into these devices. Every thing from the battery life to the screen brightness to how warm the

Mobile electronic devices such as smart phones, netbooks and tablets have seen increasing demand in recent years, and so has the need for efficient, responsive and small power management solutions that are integrated into these devices. Every thing from the battery life to the screen brightness to how warm the device gets depends on the power management solution integrated within the device. Much of the future success of these mobile devices will depend on innovative, reliable and efficient power solutions. Perhaps this is one of the drivers behind the intense research activity seen in the power management field in recent years. The demand for higher accuracy regulation and fast response in switching converters has led to the exploration of digital control techniques as a way to implement more advanced control architectures. In this thesis, a novel digitally controlled step-down (buck) switching converter architecture that makes use of switched capacitors to improve the transient response is presented. Using the proposed architecture, the transient response is improved by a factor of two or more in comparison to the theoretical limits that can be achieved with a basic step down converter control architecture. The architecture presented in this thesis is not limited to digitally controlled topologies but rather can also be used in analog topologies as well. Design and simulation results of a 1.8V, 15W, 1MHz digitally controlled step down converter with a 12mV Analog to Digital Converter (ADC) resolution and a 2ns DPWM (Digital Pulse Width Modulator) resolution are presented.
ContributorsHashim, Ahmed (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2013
154249-Thumbnail Image.png
Description
The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with

The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with mismatched panels. Sub-panel-level DMPPT is shown to have up to 14.5% more annual energy yield than panel-level DMPPT, and requires an efficient medium power converter.

This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased converter switching frequencies to significantly reduce the size of converter passives and substantially improve transient performance. But, currently available power MOSFETs put a constraint on the highest possible switching frequency due to increased switching losses. The solution is Gallium Nitride based power devices, which deliver figure of merit (FOM) performance at least an order of magnitude higher than existing silicon MOSFETs. Low power loss, high power density, low cost and small die sizes are few of the qualities that make e-GaN superior to its Si counterpart. With careful design, e-GaN can enable a 20-30% improvement in power stage efficiency compared to converters using Si MOSFETs.

The main objective of this research is to develop a highly integrated, high efficiency, 20MHz, hybrid GaN-CMOS DC-DC MPPT converter for a 12V/5A sub-panel. Hard and soft switching boost converter topologies are investigated within this research, and an innovative CMOS gate drive technique for efficiently driving an e-GaN power stage is presented in this work. The converter controller also employs a fast converging analog MPPT control technique.
ContributorsKrishnan Achary, Kiran Kumar (Author) / Kitchen, Jennifer (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2015