Matching Items (3)

151107-Thumbnail Image.png

Performance analysis of MIMO relay networks with beamforming

Description

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from the source and forwards it to the destination, respectively, where all nodes beamform with multiple antennas to obtain gains in performance with reduced power consumption. A direct link from source to destination is included in performance analysis. Novel systematic upper-bounds and lower-bounds to average bit or symbol error rates (BERs or SERs) are proposed. Second, "two-way" AF MIMO BF relay networks are investigated, in which two sources exchange their data through a relay, to improve the spectral efficiency compared with one-way relay networks. Novel unified performance analysis is carried out for five different relaying schemes using two, three, and four time slots in sum-BER, the sum of two BERs at both sources, in two-way relay networks with and without direct links. For both kinds of relay networks, when any node is beamforming simultaneously to two nodes (i.e. from source to relay and destination in one-way relay networks, and from relay to both sources in two-way relay networks), the selection of the BF coefficients at a beamforming node becomes a challenging problem since it has to balance the needs of both receiving nodes. Although this "BF optimization" is performed for BER, SER, and sum-BER in this dissertation, the solution for optimal BF coefficients not only is difficult to implement, it also does not lend itself to performance analysis because the optimal BF coefficients cannot be expressed in closed-form. Therefore, the performance of optimal schemes through bounds, as well as suboptimal ones such as strong-path BF, which beamforms to the stronger path of two links based on their received signal-to-noise ratios (SNRs), is provided for BERs or SERs, for the first time. Since different channel state information (CSI) assumptions at the source, relay, and destination provide different error performance, various CSI assumptions are also considered.

Contributors

Agent

Created

Date Created
2012

154152-Thumbnail Image.png

Performance Analysis of Low-Complexity Resource-Allocation Algorithms in Stochastic Networks Using Fluid Models

Description

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due to the precipitously increasing scale of the networks. This thesis strives to understand how to design such low-complexity algorithms with performance guarantees.

In the first part, the link scheduling problem in wireless ad hoc networks is considered. The scheduler is charge of finding a set of wireless data links to activate at each time slot with the considerations of wireless interference, traffic dynamics, network topology and quality-of-service (QoS) requirements. Two different yet essential scenarios are investigated: the first one is when each packet has a specific deadline after which it will be discarded; the second is when each packet traverses the network in multiple hops instead of leaving the network after a one-hop transmission. In both scenarios the links need to be carefully scheduled to avoid starvation of users and congestion on links. One greedy algorithm is analyzed in each of the two scenarios and performance guarantees in terms of throughput of the networks are derived.

In the second part, the load-balancing problem in parallel computing is studied. Tasks arrive in batches and the duty of the load balancer is to place the tasks on the machines such that minimum queueing delay is incurred. Due to the huge size of modern data centers, sampling the status of all machines may result in significant overhead. Consequently, an algorithm based on limited queue information at the machines is examined and its asymptotic delay performance is characterized and it is shown that the proposed algorithm achieves the same delay with remarkably less sampling overhead compared to the well-known power-of-two-choices algorithm.

Two messages of the thesis are the following: greedy algorithms can work well in a stochastic setting; the fluid model can be useful in "derandomizing" the system and reveal the nature of the algorithm.

Contributors

Agent

Created

Date Created
2015

158380-Thumbnail Image.png

Moving-Average Transient Model for Predicting the Back-surface Temperature of Photovoltaic Modules

Description

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.

Contributors

Agent

Created

Date Created
2020