Matching Items (6)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
Description
When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of

When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of moments (GMM) for estimating the coefficients in longitudinal data is presented. The appropriate and valid estimating equations associated with the time-dependent covariates are identified, thus providing substantial gains in efficiency over generalized estimating equations (GEE) with the independent working correlation. Identifying the estimating equations for computation is of utmost importance. This paper provides a technique for identifying the relevant estimating equations through a general method of moments. I develop an approach that makes use of all the valid estimating equations necessary with each time-dependent and time-independent covariate. Moreover, my approach does not assume that feedback is always present over time, or present at the same degree. I fit the GMM correlated logistic regression model in SAS with PROC IML. I examine two datasets for illustrative purposes. I look at rehospitalization in a Medicare database. I revisit data regarding the relationship between the body mass index and future morbidity among children in the Philippines. These datasets allow us to compare my results with some earlier methods of analyses.
ContributorsYin, Jianqiong (Author) / Wilson, Jeffrey Wilson (Thesis advisor) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2012
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
155069-Thumbnail Image.png
Description
This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the

This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the analysis of longitudinal data in the context of functional data analysis, while considering the unique characteristics of longitudinal data such, in particular sparseness and missing data. The third section introduces functional mixed-effects models that can handle these unique characteristics of sparseness and missingness. The next section discusses a preliminary simulation study conducted to examine the performance of a functional mixed-effects model under various conditions. An extended simulation study was carried out to evaluate the estimation accuracy of a functional mixed-effects model. Specifically, the accuracy of the estimated trajectories was examined under various conditions including different types of missing data and varying levels of sparseness.
ContributorsWard, Kimberly l (Author) / Suk, Hye Won (Thesis advisor) / Aiken, Leona (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
155893-Thumbnail Image.png
Description
Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling in 2016 yielded at 33% of total medical expenses in

Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling in 2016 yielded at 33% of total medical expenses in the US- mounting to approximately $31 billion per year. As such, it is imperative to find intervention strategies to mitigate deaths and injuries associated with fall accidents. In order for this goal to be realized, it is necessary to understand the mechanisms associated with fall accidents and more specifically, the movement profiles that may represent the cogent behavior of the locomotor system that may be amendable to rehabilitation and intervention strategies. In this light, this Thesis is focused on better understanding the factors influencing dynamic stability measure (as measured by Lyapunov exponents) during over-ground ambulation utilizing wireless Inertial Measurement Unit (IMU).

Four pilot studies were conducted: the First study was carried out to verify if IMU system was sophisticated enough to determine different load-carrying conditions. Second, to test the effects of walking inclinations, three incline levels on gait dynamic stability were examined. Third, tested whether different sections from the total gait cycle can be stitched together to assess LDS using the laboratory collected data. Finally, the fourth study examines the effect of “stitching” the data on dynamic stability measure from a longitudinally assessed (3-day continuous data collection) data to assess the effects of free-range data on assessment of dynamic stability.

Results indicated that load carrying significantly influenced dynamic stability measure but not for the floor inclination levels – indicating that future use of such measure should further implicate normalization of dynamic stability measures associated with different activities and terrain conditions. Additionally, stitching method was successful in obtaining dynamic stability measure utilizing free-living IMU data.
ContributorsMoon, Seong Hyun (Author) / Lockhart, Thurmon Eddy (Thesis advisor) / Lee, Hyunglae (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2017