Matching Items (2)
Filtering by

Clear all filters

Description
When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of

When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of moments (GMM) for estimating the coefficients in longitudinal data is presented. The appropriate and valid estimating equations associated with the time-dependent covariates are identified, thus providing substantial gains in efficiency over generalized estimating equations (GEE) with the independent working correlation. Identifying the estimating equations for computation is of utmost importance. This paper provides a technique for identifying the relevant estimating equations through a general method of moments. I develop an approach that makes use of all the valid estimating equations necessary with each time-dependent and time-independent covariate. Moreover, my approach does not assume that feedback is always present over time, or present at the same degree. I fit the GMM correlated logistic regression model in SAS with PROC IML. I examine two datasets for illustrative purposes. I look at rehospitalization in a Medicare database. I revisit data regarding the relationship between the body mass index and future morbidity among children in the Philippines. These datasets allow us to compare my results with some earlier methods of analyses.
ContributorsYin, Jianqiong (Author) / Wilson, Jeffrey Wilson (Thesis advisor) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2012
156148-Thumbnail Image.png
Description
Correlation is common in many types of data, including those collected through longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated measurements, there is inherent correlation between observations within the same group, or between observations obtained on the same subject. Longitudinal studies also introduce association

Correlation is common in many types of data, including those collected through longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated measurements, there is inherent correlation between observations within the same group, or between observations obtained on the same subject. Longitudinal studies also introduce association between the covariates and the outcomes across time. When multiple outcomes are of interest, association may exist between the various models. These correlations can lead to issues in model fitting and inference if not properly accounted for. This dissertation presents three papers discussing appropriate methods to properly consider different types of association. The first paper introduces an ANOVA based measure of intraclass correlation for three level hierarchical data with binary outcomes, and corresponding properties. This measure is useful for evaluating when the correlation due to clustering warrants a more complex model. This measure is used to investigate AIDS knowledge in a clustered study conducted in Bangladesh. The second paper develops the Partitioned generalized method of moments (Partitioned GMM) model for longitudinal studies. This model utilizes valid moment conditions to separately estimate the varying effects of each time-dependent covariate on the outcome over time using multiple coefficients. The model is fit to data from the National Longitudinal Study of Adolescent to Adult Health (Add Health) to investigate risk factors of childhood obesity. In the third paper, the Partitioned GMM model is extended to jointly estimate regression models for multiple outcomes of interest. Thus, this approach takes into account both the correlation between the multivariate outcomes, as well as the correlation due to time-dependency in longitudinal studies. The model utilizes an expanded weight matrix and objective function composed of valid moment conditions to simultaneously estimate optimal regression coefficients. This approach is applied to Add Health data to simultaneously study drivers of outcomes including smoking, social alcohol usage, and obesity in children.
ContributorsIrimata, Kyle (Author) / Wilson, Jeffrey R (Thesis advisor) / Broatch, Jennifer (Committee member) / Kamarianakis, Ioannis (Committee member) / Kao, Ming-Hung (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018