Matching Items (3)
Filtering by

Clear all filters

154108-Thumbnail Image.png
Description
A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for

A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can

result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT)

at single solar cell level is the most efficient way to extract power from solar cell.

Power Management IC (MPIC) used to extract power from single solar cell, needs to

start at 0.3 V input. MPPT circuitry should be implemented with minimal power and area

overhead. To start the PMIC at 0.3 V, a switch capacitor charge pump is utilized as an

auxiliary start up circuit for generating a regulated 1.8 V auxiliary supply from 0.3 V input.

The auxiliary supply powers up a MPPT converter followed by a regulated converter. At

the start up both the converters operate at 100 kHz clock with 80% duty cycle and system

output voltage starts rising. When the system output crosses 2.7 V, the auxiliary start up

circuit is turned off and the supply voltage for both the converters is derived from the system

output itself. In steady-state condition the system output is regulated to 3.0 V.

A fully integrated analog MPPT technique is proposed to extract maximum power from

the solar cell. This technique does not require Analog to Digital Converter (ADC) and

Digital Signal Processor (DSP), thus reduces area and power overhead. The proposed

MPPT techniques includes a switch capacitor based power sensor which senses current of

boost converter without using any sense resistor. A complete system is designed which

starts from 0.3 V solar cell voltage and provides regulated 3.0 V system output.
ContributorsSingh, Shrikant (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
155974-Thumbnail Image.png
Description
High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies.

High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies. Ability to supply large output current with improved efficiency, reduction in the size of filter components, improved transient response make multi-phase topologies a preferred choice for low voltage-high current applications.

Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme.

This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level

implementation is in close agreement with the results obtained from the PLECS model.
ContributorsBurli, Venkatesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017
157711-Thumbnail Image.png
Description
Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits

Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits are typically more prone to security attacks compared to analog circuits, but malfunctions in digital circuitry can affect the analog performance/parameters of power management circuits. This research studies the effect that these hacks will have on the analog performance of power circuits, specifically linear and switching power regulators/converters. Apart from security attacks, these circuits suffer from performance degradations due to temperature, aging, and load stress. Power management circuits usually consist of regulators or converters that regulate the load’s voltage supply by employing a feedback loop, and the stability of the feedback loop is a critical parameter in the system design. Oftentimes, the passive components employed in these circuits shift in value over varying conditions and may cause instability within the power converter. Therefore, variations in the passive components, as well as malicious hardware security attacks, can degrade regulator performance and affect the system’s stability. The traditional ways of detecting phase margin, which indicates system stability, employ techniques that require the converter to be in open loop, and hence can’t be used while the system is deployed in-the-field under normal operation. Aging of components and security attacks may occur after the power management systems have completed post-production test and have been deployed, and they may not cause catastrophic failure of the system, hence making them difficult to detect. These two issues of component variations and security attacks can be detected during normal operation over the product lifetime, if the frequency response of the power converter can be monitored in-situ and in-field. This work presents a method to monitor the phase margin (stability) of a power converter without affecting its normal mode of operation by injecting a white noise/ pseudo random binary sequence (PRBS). Furthermore, this work investigates the analog performance parameters, including phase margin, that are affected by various digital hacks on the control circuitry associated with power converters. A case study of potential hardware attacks is completed for a linear low-dropout regulator (LDO).
ContributorsMalakar, Pragya Priya (Author) / Kitchen, Jennifer (Thesis advisor) / Ozev, Sule (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2019