Matching Items (1)

150985-Thumbnail Image.png

Structure investigations of membrane protein OEP16

Description

Membrane protein structure is continuing to be a topic of interest across the scientific community. However, high resolution structural data of these proteins is difficult to obtain. The amino acid

Membrane protein structure is continuing to be a topic of interest across the scientific community. However, high resolution structural data of these proteins is difficult to obtain. The amino acid transport protein, Outer Envelope Protein, 16kDa (OEP16) is a transmembrane protein channel that allows the passive diffusion of amino acids across the outer chloroplast membrane, and is used as a model protein in order to establish methods that ultimately reveal structural details about membrane proteins using nuclear magnetic resonance (NMR) spectroscopy. Methods include recombinant expression of isotope enriched inclusion bodies, purification and reconstitution in detergent micelles, and pre-characterization techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and high pressure liquid chromatography (HPLC). High resolution NMR spectroscopy was able to assign 99% of the amide backbone and the chemical shifts provided detailed secondary structure of OEP16 on a per residue basis using the software TALOS+. Relaxation studies explored the intramolecular dynamics of OEP16 and results strongly support the resonance assignments. Successful titration studies were able to locate residues important for amino acid binding for import into the chloroplast as well as provide information on how the transmembrane helices of OEP16 are packed together. For the first time there is experimental evidence that can assign the location of secondary structure in OEP16 and creates a foundation for a future three dimensional structure.

Contributors

Agent

Created

Date Created
  • 2012