Matching Items (7)

155231-Thumbnail Image.png

Tuning surface wettability through volumetric engineering

Description

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact angle hysteresis (i.e. ability to easily shed droplets) are explained. First, water-shedding metal matrix hydrophobic nanoparticle composites with high thermal conductivity for steam condensation rate enhancement are discussed. Despite having static contact angle <90° (not hydrophobic), sustained dropwise steam condensation can be achieved at the exterior surface of the composite due to low contact angle hysteresis (CAH). In order to explain this observation, the effect of varying the length scale of surface wetting heterogeneity over three orders of magnitude on the value of CAH was experimentally investigated. This study revealed that the CAH value is primarily governed by the pinning length which in turn depends on the length scale of wetting heterogeneity. Modifying the heterogeneity size ultimately leads to near isotropic wettability for surfaces with highly anisotropic nanoscale chemical heterogeneities. Next, development of lubricant-swollen polymeric omniphobic protective gear for defense and healthcare applications is described. Specifically, it is shown that the robust and durable protective gear can be made from polymeric material fully saturated with lubricant that can shed all liquids irrespective of their surface tensions even after multiple contact incidences with the foreign objects. Further, a couple of schemes are proposed to improve the rate of lubrication and replenishment of lubricant as well as reduce the total amount of lubricant required in making the polymeric protective gear omniphobic. Overall, this research aims to understand the underlying physics of dynamic surface-liquid interaction and provides simple scalable route to fabricate better materials for condensers and omniphobic protective gear.

Contributors

Agent

Created

Date Created
  • 2017

154119-Thumbnail Image.png

Characterizing nanomaterials and protic ionic liquids utilizing nuclear magnetic resonance spectroscopy

Description

Structural details of phosphonic acid functionalized nanomaterials and protic ionic liquids (PILs) were characterized using nuclear magnetic resonance (NMR) spectroscopy. It is well known that ligands play a critical

Structural details of phosphonic acid functionalized nanomaterials and protic ionic liquids (PILs) were characterized using nuclear magnetic resonance (NMR) spectroscopy. It is well known that ligands play a critical role in the synthesis and properties of nanomaterials. Therefore, elucidating the details of ligand-surface and ligand-ligand interactions is crucial to understanding nanomaterial systems more completely.

In an effort to further the understanding of ligand-surface interactions, a combination of multi-nuclear (1H, 29Si, 31P) and multi-dimensional solid-state NMR techniques were utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methyl phosphonic acid (MPA) and phenyl phosphonic acid (PPA). Quantitative 31P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. Furthermore, 1H-1H single quantum-double quantum (SQ-DQ) back-to-back (BABA) 2D NMR spectra of silica functionalized with MPA and PPA indicate that the MPA and PPA are within 4.2±0.2 Å on the surface of the nanomaterial.

The ligand capping of phosphonic acid (PA) functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of ligand exchange, solution and solid-state 31P NMR spectroscopy. In order to quantify the ligand populations on the surface of the QDs, ligand exchange facilitated by PPA resulted in the displacement of the PAs, and allowed for quantification of the free ligands using 31P liquid state NMR.

In addition to characterizing nanomaterials, the ionicity and transport properties of a series of diethylmethylamine (DEMA) based protic ionic liquids (PILs) were characterized, principally utilizing NMR. Gas phase proton affinity was shown to be a better predictor for the extent of proton transfer, and in turn the ionicity of the PIL, than using ∆pKa. Furthermore, pulsed field gradient (PFG) NMR was used to determine that the exchangeable proton diffuses with the cation or the anion based on the strength of the acid used to generate the PILs.

Contributors

Agent

Created

Date Created
  • 2015

153758-Thumbnail Image.png

Polarization and electronic state configuration of III-N surfaces and plasma-enhanced atomic layer deposited dielectric interfaces

Description

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points:

First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band bending was measured after different surface treatments of GaN and AlGaN to determine the effects of specific surface states on the electronic state configuration. Results showed oxygen-terminated N-face GaN, Ga-face GaN, and Ga-face Al0.25Ga0.75N surface were characterized by similar band bending regardless of the polarization bound charge, suggesting a Fermi level pinning state ~0.4-0.8 eV below the conduction band minimum. On oxygen-free Ga-face GaN, Al0.15Ga0.85N, Al0.25Ga0.75N, and Al0.35Ga0.65N, band bending increased slightly with aluminum content and thus did not exhibit the same pinning behavior; however, there was still significant compensating charge on these surfaces (~1013 charges/cm2). This charge is likely related to nitrogen vacancies and/or gallium dangling bonds.

In addition, this wozrk investigated the interface electronic state configuration of dielectric/GaN and AlGaN interfaces with regards to deposition conditions and aluminum content. Specifically, oxygen plasma-enhanced atomic layer deposited (PEALD) was used to deposit SiO2. Growth temperature was shown to influence the film quality, where room temperature deposition produced the highest quality films in terms of electrical breakdown. In addition, the valence band offsets (VBOs) appeared to decrease with the deposition temperature, which likely related to an electric field across the Ga2O3 interfacial layer. VBOs were also determined with respect to aluminum content at the PEALD-SiO2/AlxGa1-xN interface, giving 3.0, 2.9, 2.9, and 2.8 eV for 0%, 15%, 25%, and 35% aluminum content, respectively—with corresponding conduction band offsets of 2.5, 2.2, 1.9, and 1.8 eV. This suggests the largest difference manifests in the conduction band, which is in agreement with the charge neutrality level model.

Contributors

Agent

Created

Date Created
  • 2015

154907-Thumbnail Image.png

Chemical vapor deposition of metastable germanium based semiconductors for optoelectronic applications

Description

Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via

Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of Ge. The epitaxial Ge films produced in this work incorporate donor atoms at concentrations above the thermodynamic equilibrium limits. The donors are nearly fully activated, and led to films with lowest resistivity values thus far reported.

Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy layers was conducted on virtual Ge substrates, and made use of the germanium hydrides Ge2H6 and Ge3H8, and the Sn source SnD4. These films exhibit stronger emission than equivalent material deposited directly on Si, and the contributions from the direct and indirect edges can be separated. The indirect-direct crossover composition for Ge1-ySny alloys was determined by photoluminescence (PL). By n-type doping of the Ge1-ySny alloys via P(GeH3)3, P(SiH3)3 and As(SiH3)3, it was possible to enhance photoexcited emission by more than an order-of-magnitude.

The above techniques for deposition of direct gap Ge1-ySny alloys and doping of Ge were combined with p-type doping methods for Ge1-ySny using B2H6 to fabricate pin heterostructure diodes with active layer compositions up to y=0.137. These represent the first direct gap light emitting diodes made from group IV materials. The effect of the single defected n-i¬ interface in a n-Ge/i-Ge1-ySny/p-Ge1-zSnz architecture on electroluminescence (EL) was studied. This led to lattice engineering of the n-type contact layer to produce diodes of n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architecture which are devoid of interface defects and therefore exhibit more efficient EL than the previous design. Finally, n-Ge1-ySny/p-Ge1-zSnz pn junction devices were synthesized with varying composition and doping parameters to investigate the effect of these properties on EL.

Contributors

Agent

Created

Date Created
  • 2016

157579-Thumbnail Image.png

Exploration of the cold-wall CVD synthesis of monolayer MoS2 and WS2

Description

A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD)

A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD) of precursors in a custom built cold-wall reaction chamber designed to allow independent control over the growth parameters. Iterations of this reaction chamber were employed to overcome limitations to the growth method. First, molybdenum trioxide, MoO3, and S were co-evaporated from alumina coated W baskets to grow MoS2 on SiO2/Si substrates. Using this method, films were found to have repeatable coverage, but unrepeatable morphology. Second, the reaction chamber was modified to include a pair of custom bubbler delivery systems to transport diethyl sulfide (DES) and molybdenum hexacarbonyl (MHC) to the substrate as a S and Mo precursors. Third, tungsten hexacarbonyl (WHC) replaced MHC as a transition metal precursor for the synthesis of WS2 on Al2O3, substrates. This method proved repeatable in both coverage and morphology allowing the investigation of the effect of varying the flow of Ar, varying the substrate temperature and varying the flux of DES to the sample. Increasing each of these parameters was found to decrease the nucleation density on the sample and, with the exception of the Ar flow, induce multi-layer feature growth. This combination of precursors was also used to investigate the reported improvement in feature morphology when NaCl is placed upstream of the substrate. This was found to have no effect on experiments in the configurations used. A final effort was made to adequately increase the feature size by switching from DES to hydrogen sulfide, H2S, as a source of S. Using H2S and WHC to grow WS2 films on Al2O3, it was found that increasing the substrate temperature and increasing the H2S flow both decrease nucleation density. Increasing the H2S flow induced bi-layer growth. Ripening of synthesized WS2 crystals was demonstrated to occur when the sample was annealed, post-growth, in an Ar, H2, and H2S flow. Finally, it was verified that the final H2S and WHC growth method yielded repeatability and uniformity matching, or improving upon, the other methods and precursors investigated.

Contributors

Agent

Created

Date Created
  • 2019

150925-Thumbnail Image.png

Surface modification of polydimethyl siloxane using polyethylene oxide copolymers

Description

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make it well suited for bioanalytical applications. In this project, the role of polyethylene oxide copolymers F108 and PLL-PEG has been investigated to modify the surface properties of PDMS using physisorption method. Measuring electroosmotic flow and adsorption studies tested the quality and the long-term stability of the modified PDMS surface. Static and dynamic coating strategies were used to modify the PDMS surface. In static coating, the PDMS surface was incubated with the coating agent prior to the measurements. For dynamic coating, the coating agent was always present in the solution throughout the experiment. F108 and PLL-PEG were equally effective to prevent the protein adsorption under both strategies. However, dynamic coating was more time saving. Furthermore, effective reduction of EOF was observed with F108 coating agent under dynamic conditions and with PLL-PEG coating agent under static conditions. Moreover, PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings could be used to manipulate EOF and suggest optimal coating agent and strategies for PDMS surface treatment by the physisorption method.

Contributors

Agent

Created

Date Created
  • 2012

151898-Thumbnail Image.png

Epitaxy of group IV optical materials and synthesis of IV/III-V semiconductor analogs by designer hydride chemistries

Description

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.

Contributors

Agent

Created

Date Created
  • 2013