Matching Items (5)

Standardizing the Calculation of the Lyapunov Exponent for Human Gait using Inertial Measurement Units

Description

There are many inconsistencies in the literature regarding how to estimate the Lyapunov Exponent (LyE) for gait. In the last decade, many papers have been published using Lyapunov Exponents to

There are many inconsistencies in the literature regarding how to estimate the Lyapunov Exponent (LyE) for gait. In the last decade, many papers have been published using Lyapunov Exponents to determine differences between young healthy and elderly adults and healthy and frail older adults. However, the differences in methodologies of data collection, input parameters, and algorithms used for the LyE calculation has led to conflicting numerical values for the literature to build upon. Without a unified methodology for calculating the LyE, researchers can only look at the trends found in studies. For instance, LyE is generally lower for young adults compared to elderly adults, but these values cannot be correlated across studies to create a classifier for individuals that are healthy or at-risk of falling. These issues could potentially be solved by standardizing the process of computing the LyE.

This dissertation examined several hurdles that must be overcome to create a standardized method of calculating the LyE for gait data when collected with an accelerometer. In each of the following investigations, both the Rosenstein et al. and Wolf et al. algorithms as well as three normalization methods were applied in order to understand the extent at which these factors affect the LyE. First, the a priori parameters of time delay and embedding dimension which are required for phase space reconstruction were investigated. This study found that the time delay can be standardized to a value of 10 and that an embedding dimension of 5 or 7 should be used for the Rosenstein and Wolf algorithm respectively. Next, the effect of data length on the LyE was examined using 30 to 1300 strides of gait data. This analysis found that comparisons across papers are only possible when similar amounts of data are used but comparing across normalization methods is not recommended. And finally, the reliability and minimum required number of strides for each of the 6 algorithm-normalization method combinations in both young healthy and elderly adults was evaluated. This research found that the Rosenstein algorithm was more reliable and required fewer strides for the calculation of the LyE for an accelerometer.

Contributors

Agent

Created

Date Created
  • 2019

155568-Thumbnail Image.png

The impact of coordination quality on coordination dynamics and team performance: when humans team with autonomy

Description

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.

Contributors

Agent

Created

Date Created
  • 2017

154453-Thumbnail Image.png

A nonlinear analysis of movement variability: stability in a sit to a stand

Description

The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and

The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and clinicians in the treatment of variability in motor control. The current study aims at testing the utility of a nonlinear analysis measure – the Largest Lyapunov exponent (1) – in a whole body movement. Experiment 1 examined this measure, in comparison to traditional linear measure (standard deviation), by having participants perform a sit-to-stand (STS) task on platforms that were either stable or unstable. Results supported the notion that the Lyapunov measure characterized controlled/stable movement across the body more accurately than the traditional standard deviation (SD) measure. Experiment 2 tested this analysis further by presenting participants with an auditory perturbation during performance of the same STS task. Results showed that both the Lyapunov and SD measures failed to detect the perturbation. However, the auditory perturbation may not have been an appropriate perturbation. Limitations of Experiment 2 are discussed, as well as directions for future study.

Contributors

Agent

Created

Date Created
  • 2016

150924-Thumbnail Image.png

Brain dynamics based automated epileptic seizure detection

Description

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The motivation for the development of an automated seizure detection algorithm in this research was to assist physicians in such a laborious, time consuming and expensive task. Seizures in the EEG vary in duration (seconds to minutes), morphology and severity (clinical to subclinical, occurrence rate) within the same patient and across patients. The task of seizure detection is also made difficult due to the presence of movement and other recording artifacts. An early approach towards the development of automated seizure detection algorithms utilizing both EEG changes and clinical manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. Approaches based on artificial neural networks have improved the detection performance at the cost of algorithm's training. Measures of nonlinear dynamics, such as Lyapunov exponents, have been applied successfully to seizure prediction. Within the framework of this MS research, a seizure detection algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE) was developed and tested. The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 93% and mean specificity of 0.048 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free and patient-independent. It is expected that this algorithm will assist physicians in reducing the time spent on detecting seizures, lead to faster and more accurate diagnosis, better evaluation of treatment, and possibly to better treatments if it is incorporated on-line and real-time with advanced neuromodulation therapies for epilepsy.

Contributors

Agent

Created

Date Created
  • 2012

155064-Thumbnail Image.png

Detection, prediction and control of epileptic seizures

Description

From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes

From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical and psychological level. Although not lethal by themselves, they can bring about total disruption in consciousness which can, in hazardous conditions, lead to fatality. Roughly 1\% of the world population suffer from epilepsy and another 30 to 50 new cases per 100,000 increase the number of affected annually. Controlling seizures in epileptic patients has therefore become a great medical and, in recent years, engineering challenge.

In this study, the conditions of human seizures are recreated in an animal model of temporal lobe epilepsy. The rodents used in this study are chemically induced to become chronically epileptic. Their Electroencephalogram (EEG) data is then recorded and analyzed to detect and predict seizures; with the ultimate goal being the control and complete suppression of seizures.

Two methods, the maximum Lyapunov exponent and the Generalized Partial Directed Coherence (GPDC), are applied on EEG data to extract meaningful information. Their effectiveness have been reported in the literature for the purpose of prediction of seizures and seizure focus localization. This study integrates these measures, through some modifications, to robustly detect seizures and separately find precursors to them and in consequence provide stimulation to the epileptic brain of rats in order to suppress seizures. Additionally open-loop stimulation with biphasic currents of various pairs of sites in differing lengths of time have helped us create control efficacy maps. While GPDC tells us about the possible location of the focus, control efficacy maps tells us how effective stimulating a certain pair of sites will be.

The results from computations performed on the data are presented and the feasibility of the control problem is discussed. The results show a new reliable means of seizure detection even in the presence of artifacts in the data. The seizure precursors provide a means of prediction, in the order of tens of minutes, prior to seizures. Closed loop stimulation experiments based on these precursors and control efficacy maps on the epileptic animals show a maximum reduction of seizure frequency by 24.26\% in one animal and reduction of length of seizures by 51.77\% in another. Thus, through this study it was shown that the implementation of the methods can ameliorate seizures in an epileptic patient. It is expected that the new knowledge and experimental techniques will provide a guide for future research in an effort to ultimately eliminate seizures in epileptic patients.

Contributors

Agent

Created

Date Created
  • 2016