Matching Items (4)

152115-Thumbnail Image.png

The influence of altered precipitation frequency on biological soil crust bacterial community structure, diversity, and ecosystem functions

Description

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.

Contributors

Agent

Created

Date Created
  • 2013

158702-Thumbnail Image.png

Biocrust Responses to Altered Precipitation Regimes

Description

Desert organisms lead harsh lives owing to the extreme, often unpredictable environmental conditions they endure. Climate change will likely make their existence even harsher. Predicting the ecological consequences of future

Desert organisms lead harsh lives owing to the extreme, often unpredictable environmental conditions they endure. Climate change will likely make their existence even harsher. Predicting the ecological consequences of future climate scenarios thus requires understanding how the biota will be affected by climatic shifts. Biological soil crusts (biocrusts) are an important ecosystem component in arid lands, one that covers large portions of the landscape, improving soil stability and fertility. Because cyanobacteria are biocrust’s preeminent primary producers, eking out an existence during short pulses of precipitation, they represent a relevant global change object of study. I assessed how climate scenarios predicted for the Southwestern United States (US) will affect biocrusts using long-term, rainfall-modifying experimental set-ups that imposed either more intense drought, a seasonally delayed monsoon season, or a shift to smaller but more frequent precipitation events. I expected drought to be detrimental, but not a delay in the monsoon season. Surprisingly, both treatments showed similar effects on cyanobacterial community composition and population size after four years. While successionally incipient biocrusts were unaffected, mature biocrusts lost biomass and diversity with treatment, especially among nitrogen-fixing cyanobacteria. In separate experiments, I assessed the effect of rainfall with modified event size and frequency after a decade of treatment. Small, frequent rainfall events surprisingly enhanced the diversity and biomass of bacteria and cyanobacteria, with clear winners and losers: nitrogen-fixing Scytonema sp. benefited, while Microcoleus vaginatus lost its dominance. As an additional finding, I could also show that water addition is not always beneficial to biocrusts, calling into question the notion that these are strictly water-limited systems.

Finally, results interpretation was severely hampered by a lack of appropriate systematic treatment for an important group of biocrust cyanobacteria, the “Microcoleus steenstrupii complex”. I characterized the complex using a polyphasic approach, leading to the formal description of a new family (Porphyrosiphonaceae) of desiccation resistant cyanobacteria that includes 11 genera, of which 5 had to be newly described. Under the new framework, the distribution and abundance of biocrust cyanobacteria with respect to environmental conditions can now be understood. This body of work contributes significantly to explain current distributional patterns of biocrust cyanobacteria and to predict their fate in the face of climate change.

Contributors

Agent

Created

Date Created
  • 2020

153966-Thumbnail Image.png

Using an ecohydrology model to explore the role of biological soil crusts on soil hydrologic conditions at the Canyonlands Research Station, Utah

Description

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.

Contributors

Agent

Created

Date Created
  • 2015

150749-Thumbnail Image.png

Element use and acquisition strategies in biological soil crusts

Description

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.

Contributors

Agent

Created

Date Created
  • 2012