Matching Items (16)

153289-Thumbnail Image.png

Optimal substation ground grid design based on genetic algorithm and pattern research

Description

Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of

Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing the ground grid in the accurate and efficient way, an application package coded in MATLAB is developed and its core algorithm and main features are introduced in this work.

To ensure accuracy and personnel safety, a two-layer soil model is applied instead of the uniform soil model in this research. Some soil model parameters are needed for the two-layer soil model, namely upper-layer resistivity, lower-layer resistivity and upper-layer thickness. Since the ground grid safety requirement is considered under the earth fault, the value of fault current and fault duration time are also needed.

After all these parameters are obtained, a Resistance Matrix method is applied to calculate the mutual and self resistance between conductor segments on both the horizontal and vertical direction. By using a matrix equation of the relationship of mutual and self resistance and unit current of the conductor segments, the ground grid rise can be calculated. Green's functions are applied to calculate the earth potential at a certain point produced by horizontal or vertical line of current. Furthermore, the three basic ground grid safety requirement quantities: the mesh touch potential in the worst case point can be obtained from the earth potential and ground grid rise; the step potential can be obtained from two points' earth potential difference; the grid resistance can be obtained from ground grid rise and fault current.

Finally, in order to achieve ground grid optimization problem more accurate and efficient, which includes the number of meshes in the horizontal grid and the number of vertical rods, a novel two-step hybrid genetic algorithm-pattern search (GA-PS) optimization method is developed. The Genetic Algorithm (GA) is used first to search for an approximate starting point, which is used by the Pattern Search (PS) algorithm to find the final optimal result. This developed application provides an optimal grid design meeting all safety constraints. In the cause of the accuracy of the application, the touch potential, step potential, ground potential rise and grid resistance are compared with these produced by the industry standard application WinIGS and some theoretical ground grid model.

In summary, the developed application can solve the ground grid optimization problem with the accurate ground grid modeling method and a hybrid two-step optimization method.

Contributors

Agent

Created

Date Created
  • 2014

153235-Thumbnail Image.png

Detection of cyber attacks in power distribution energy management systems

Description

The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent

The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent be-tween the distribution operator and the customer on a real-time basis. Signals are used for auto-mated energy management, protection and energy metering. This thesis aims at making use of various signals in the system to detect cyber attacks. The focus of the thesis is on a cyber attack that changes the parameters of the energy management system. The attacks considered change the set points, thresholds for energy management decisions, signal multipliers, and other digitally stored parameters that ultimately determine the transfer functions of the components. Since the distribution energy management system is assumed to be in a Smart Grid infrastructure, customer demand is elastic to the price of energy. The energy pricing is represented by a distribution loca-tional marginal price. A closed loop control system is utilized as representative of the energy management system. Each element of the system is represented by a linear transfer function. Studies are done via simulations and these simulations are performed in Matlab SimuLink. The analytical calculations are done using Matlab.

Signals from the system are used to obtain the frequency response of the component transfer functions. The magnitude and phase angle of the transfer functions are obtained using the fast Fourier transform. The transfer function phase angles of base cases (no attack) are stored and are compared with the phase angles calculated at regular time intervals. If the difference in the phase characteristics is greater than a set threshold, an alarm is issued indicating the detection of a cyber attack.

The developed algorithm is designed for use in the envisioned Future Renewable Electric Energy Delivery and Management (FREEDM) system. Examples are shown for the noise free and noisy cases.

Contributors

Agent

Created

Date Created
  • 2014

153884-Thumbnail Image.png

Novel directional protection sheme for the FREEDM smart grid system

Description

This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level

This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.

Contributors

Agent

Created

Date Created
  • 2015

152597-Thumbnail Image.png

Implementation of pilot protection system for large scale distribution system like the future renewable electric energy distribution management project

Description

A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more

A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.

Contributors

Agent

Created

Date Created
  • 2014

151244-Thumbnail Image.png

State Estimation for Enhanced Monitoring, Reliability, Restoration and Control of Smart Distribution Systems

Description

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.

Contributors

Agent

Created

Date Created
  • 2012

153027-Thumbnail Image.png

Design and development of protection schemes for FREEDM smart grid systems

Description

This research work describes the design and validation of protection schemes developed to solve the problem of communication with an ability to detect and sectionalize the fault. Protection schemes have

This research work describes the design and validation of protection schemes developed to solve the problem of communication with an ability to detect and sectionalize the fault. Protection schemes have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Due to the presence of distributed generation (DG), power flow in the loop is bi-directional and conventional protection schemes may face the problem of unwanted tripping. Hence customized protection schemes have been developed specific to the FREEDM system. Former FREEDM students at ASU have developed ultrafast pilot differential protection using fast analog communication (Ethercat communication) and modified it in various ways to speed up the fault detecting capability of the algorithm. However, the National Science Foundation (NSF) criticized the use of Ethernet communication, as it is not compatible for long distances. FREEDM loop uses a fault current limiter (FCL) to limit the fault current and the substation solid state transformer (SST) reduces the system voltage to limit the fault current to 2 per unit. This allows the protection scheme to detect fault current in 2-3 cycles. However a much delayed fault detection is not encouraged as it will disrupt the power supply to healthy parts of the system for a longer duration. Time inverse directional overcurrent protection, pilot directional protection and PMU based protection are developed in this thesis work addressing the communication problem and at the same time with the ability to quickly detect the faults. Validation of the protection scheme is performed on the Real Time Digital Simulator (RTDS) at the Center for Advanced Power Systems (CAPS) using SEL relays and simulation models are developed in PSCAD.

Contributors

Agent

Created

Date Created
  • 2014

151322-Thumbnail Image.png

The impact of increased penetration of photovoltaic generation on smart grids

Description

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.

Contributors

Agent

Created

Date Created
  • 2012

154870-Thumbnail Image.png

Enhanced power system operational performance with anticipatory control under increased penetration of wind energy

Description

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately,

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to power grid systems that improve power system operational performance in the presence of anticipated events such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable resources, a thorough and accurate characterization of wind activity is necessary to maintain grid stability and reliability. Wind power ramps from an existing wind farm are studied to characterize persistence forecasting errors using extreme value analysis techniques. In addition, a novel metric that quantifies the amount of non-stationarity in time series wind power data was proposed and used in a real-time algorithm to provide a rigorous method that adaptively determines training data for forecasts. Lastly, large swings in generation or load can cause system frequency and tie-line flows to deviate from nominal, so an anticipatory MPC-based secondary control scheme was designed and integrated into an automatic generation control loop to improve the ability of an interconnection to respond to anticipated large events and fluctuations in the power system.

Contributors

Agent

Created

Date Created
  • 2016

154428-Thumbnail Image.png

OLGGA: the optimaL ground grid application

Description

The grounding system in a substation is used to protect personnel and equipment. When there is fault current injected into the ground, a well-designed grounding system should disperse the fault

The grounding system in a substation is used to protect personnel and equipment. When there is fault current injected into the ground, a well-designed grounding system should disperse the fault current into the ground in order to limit the touch potential and the step potential to an acceptable level defined by the IEEE Std 80. On the other hand, from the point of view of economy, it is desirable to design a ground grid that minimizes the cost of labor and material. To design such an optimal ground grid that meets the safety metrics and has the minimum cost, an optimal ground grid application was developed in MATLAB, the OptimaL Ground Grid Application (OLGGA).

In the process of ground grid optimization, the touch potential and the step potential are introduced as nonlinear constraints in a two layer soil model whose parameters are set by the user. To obtain an accurate expression for these nonlinear constraints, the ground grid is discretized by using a ground-conductor (and ground-rod) segmentation method that breaks each conductor into reasonable-size segments. The leakage current on each segment and the ground potential rise (GPR) are calculated by solving a matrix equation involving the mutual resistance matrix. After the leakage current on each segment is obtained, the touch potential and the step potential can be calculated using the superposition principle.

A genetic algorithm is used in the optimization of the ground grid and a pattern search algorithm is used to accelerate the convergence. To verify the accuracy of the application, the touch potential and the step potential calculated by the MATLAB application are compared with those calculated by the commercialized grounding system analysis software, WinIGS.

The user's manual of the optimal ground grid application is also presented in this work.

Contributors

Agent

Created

Date Created
  • 2016

153117-Thumbnail Image.png

Detection of back-fed ground faults using smart grid distribution technology

Description

The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can

The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can cause a hazard to the public. A downed conductor that creates an electrical path between a current carrying conductor and ground pose a potential lethal hazard to anyone in the near proximity. Electric utilities have yet to find a fully accepted and reliable method for detecting downed conductors even with decades of research.

With the entry of more automation and a smarter grid in the different layers of distribution power system supply, new doors are being opened and new feasible solutions are waiting to be explored. The 'big data' and the infrastructures that are readily accessible through the smart metering system is the base of the work and analysis performed in this thesis. In effect, the new technologies and new solutions are an artifact of the Smart Grid effort which has now reached worldwide dimensions. A solution to problems of overhead distribution conductor failures / faults that use simple methods and that are easy to implement using existing and future distribution management systems is presented.

A European type distribution system using three phase supply is utilized as the test bed for the concepts presented. Fault analysis is performed on the primary and the secondary distribution system using the free downloadable software OpenDSS. The outcome is a set of rules that can be implemented either locally or central using a voltage based method. Utilized in the distribution management systems the operators will be given a powerful tool to make the correct action when a situation occurs. The test bed itself is taken from an actual system in Norway.

Contributors

Agent

Created

Date Created
  • 2014