Matching Items (4)
Filtering by

Clear all filters

152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
152063-Thumbnail Image.png
Description
A cerebral aneurysm is a bulging of a blood vessel in the brain. Aneurysmal rupture affects 25,000 people each year and is associated with a 45% mortality rate. Therefore, it is critically important to treat cerebral aneurysms effectively before they rupture. Endovascular coiling is the most effective treatment for cerebral

A cerebral aneurysm is a bulging of a blood vessel in the brain. Aneurysmal rupture affects 25,000 people each year and is associated with a 45% mortality rate. Therefore, it is critically important to treat cerebral aneurysms effectively before they rupture. Endovascular coiling is the most effective treatment for cerebral aneurysms. During coiling process, series of metallic coils are deployed into the aneurysmal sack with the intent of reaching a sufficient packing density (PD). Coils packing can facilitate thrombus formation and help seal off the aneurysm from circulation over time. While coiling is effective, high rates of treatment failure have been associated with basilar tip aneurysms (BTAs). Treatment failure may be related to geometrical features of the aneurysm. The purpose of this study was to investigate the influence of dome size, parent vessel (PV) angle, and PD on post-treatment aneurysmal hemodynamics using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). Flows in four idealized BTA models with a combination of dome sizes and two different PV angles were simulated using CFD and then validated against PIV data. Percent reductions in post-treatment aneurysmal velocity and cross-neck (CN) flow as well as percent coverage of low wall shear stress (WSS) area were analyzed. In all models, aneurysmal velocity and CN flow decreased after coiling, while low WSS area increased. However, with increasing PD, further reductions were observed in aneurysmal velocity and CN flow, but minimal changes were observed in low WSS area. Overall, coil PD had the greatest impact while dome size has greater impact than PV angle on aneurysmal hemodynamics. These findings lead to a conclusion that combinations of treatment goals and geometric factor may play key roles in coil embolization treatment outcomes, and support that different treatment timing may be a critical factor in treatment optimization.
ContributorsIndahlastari, Aprinda (Author) / Frakes, David (Thesis advisor) / Chong, Brian (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2013
150720-Thumbnail Image.png
Description
Current treatment methods for cerebral aneurysms are providing life-saving measures for patients suffering from these blood vessel wall protrusions; however, the drawbacks present unfortunate circumstances in the invasive procedure or with efficient occlusion of the aneurysms. With the advancement of medical devices, liquid-to-solid gelling materials that could be delivered endovascularly

Current treatment methods for cerebral aneurysms are providing life-saving measures for patients suffering from these blood vessel wall protrusions; however, the drawbacks present unfortunate circumstances in the invasive procedure or with efficient occlusion of the aneurysms. With the advancement of medical devices, liquid-to-solid gelling materials that could be delivered endovascularly have gained interest. The development of these systems stems from the need to circumvent surgical methods and the requirement for improved occlusion of aneurysms to prevent recanalization and potential complications. The work presented herein reports on a liquid-to-solid gelling material, which undergoes gelation via dual mechanisms. Using a temperature-responsive polymer, poly(N-isopropylacrylamide) (poly(NIPAAm), the gelling system can transition from a solution at low temperatures to a gel at body temperature (physical gelation). Additionally, by conjugating reactive functional groups onto the polymers, covalent cross-links can be formed via chemical reaction between the two moieties (chemical gelation). The advantage of this gelling system comprises of its water-based properties as well as the ability of the physical and chemical gelation to occur within physiological conditions. By developing the polymer gelling system in a ground-up approach via synthesis, its added benefit is the capability of modifying the properties of the system as needed for particular applications, in this case for embolization of cerebral aneurysms. The studies provided in this doctoral work highlight the synthesis, characterization and testing of these polymer gelling systems for occlusion of aneurysms. Conducted experiments include thermal, mechanical, structural and chemical characterization, as well as analysis of swelling, degradation, kinetics, cytotoxicity, in vitro glass models and in vivo swine study. Data on thermoresponsive poly(NIPAAm) indicated that the phase transition it undertakes comes as a result of the polymer chains associating as temperature is increased. Poly(NIPAAm) was functionalized with thiols and vinyls to provide for added chemical cross-linking. By combining both modes of gelation, physical and chemical, a gel with reduced creep flow and increased strength was developed. Being waterborne, the gels demonstrated excellent biocompatibility and were easily delivered via catheters and injected within aneurysms, without undergoing degradation. The dual gelling polymer systems demonstrated potential in use as embolic agents for cerebral aneurysm embolization.
ContributorsBearat, Hanin H (Author) / Vernon, Brent L (Thesis advisor) / Frakes, David (Committee member) / Massia, Stephen (Committee member) / Pauken, Christine (Committee member) / Preul, Mark (Committee member) / Solis, Francisco (Committee member) / Arizona State University (Publisher)
Created2012
154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
ContributorsNair, Priya (Author) / Frakes, David (Thesis advisor) / Vernon, Brent (Committee member) / Chong, Brian (Committee member) / Pizziconi, Vincent (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2016