Matching Items (8)

150890-Thumbnail Image.png

Observing simulated images of the high redshift universe: the faint end luminosity function

Description

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.

Contributors

Agent

Created

Date Created
  • 2012

155509-Thumbnail Image.png

H-alpha emitting galaxies at z ~0.6 in the deep and wide narrowband survey

Description

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Dee

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).

The present sample, based on a single DAWN field, contains 116 Hα emission-

line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These

candidates have been selected through comparison of narrow and broad-band images

in the infrared and through matching with existing catalogs in the COSMOS field.

The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92

erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From

this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An

additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint

end slope and luminosity density that are derived are consistent with prior results at

similar redshifts, with reduced uncertainties.

An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-

lation between the galaxies’ sizes and their Hα emission.

Contributors

Agent

Created

Date Created
  • 2017

155904-Thumbnail Image.png

Antenna design and foreground characterization for improved detection of the redshifted 21 cm global signature during the Epoch of Reionization

Description

The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly

The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr).

The interaction of the 21 cm hyperfine ground state emission/absorption-line of HI with the cosmic microwave background (CMB) and the radiation from the first luminous sources in the universe can be used to extract cosmological information about the EoR. Theorists have created global redshifted 21 cm EoR models of this interaction that predict the temperature perturbations to the CMB in the form of a sky-averaged difference temperature, Tb. The difficulty in measuring Tb is that it is

predicted to be on the order of 20 to 100 mK, while the sky foreground is dominated

by synchrotron radiation that is 105 times brighter. The challenge is to subtract the much brighter foreground radiation without subtracting the Tb signal and can only be done when the data has small error levels.

The Experiment to Detect the Global EoR Signature (EDGES) is an effort to measure Tb with a single wide field-of-view well-calibrated antenna. This dissertation focuses on reducing systematic errors by quantifying the impact of the chromatic nature of the antenna’s beam directivity and by measuring the variability of the spectral index of the radio sky foreground. The chromatic beam study quantified the superior qualities of the rectangular blade-shaped antenna and led to its adoption over the previously used fourpoint-shaped antenna and determined that a 5 term polynomial was optimum for removing the foreground. The spectral index, β, of the sky was measured, using 211 nights of data, to be −2.60 > β > −2.62 in lower LST regions, increasing to −2.50 near the Galactic plane. This matched simulated results using the Guzm´an et al. (2011) sky map (∆β < 0.05) and demonstrated the exceptional stability of the EDGES instrument. Lastly, an EoR model by Kaurov & Gnedin (2016) was shown to be inconsistent with measured EDGES data at a significance level of 1.9.

Contributors

Agent

Created

Date Created
  • 2017

152408-Thumbnail Image.png

Markov chain Monte Carlo modeling of high-redshift quasar host galaxies in Hubble Space Telescope imaging

Description

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content.

Contributors

Agent

Created

Date Created
  • 2014

150630-Thumbnail Image.png

Formation of compact stellar clusters by high-redshift galaxy outflows

Description

Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit,

Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the evolution of the minihalo gas. Molecular coolants are important since they allow gas to cool below 10000 K. Therefore, I implement a primordial chemistry and cooling network that tracks the evolution and cooling from these species. I show that the shock from the galaxy outflow produces an abundance of coolants in the primordial gas which allows the gas to cool to below 10000 K. I also show that this interaction produces compact stellar clusters that are ejected from their parent dark matter halos. In Chapter 3 I look at the turbulent mixing of metals that occur between the minihalo and outflow. To do this, I develop a sub-grid model for turbulence that reproduces three primary fluid instabilities. I find that the metals from the outflow are well mixed throughout the minihalo gas. In addition, the metal abundance found roughly corresponds to the observed abundances in halo globular clusters. In Chapter 4, I conduct a suite of simulations that follow this interaction over a wide range of parameters. In almost all cases, the shocked minihalos form molecules and cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, I show that the unique properties of these clusters make them a prime observational target for study with the next generation of telescopes. Given the unique properties of these clusters there are reasons to suspect that their low-redshift counterparts are halo globular clusters. I outline this comparison in Chapter 5 and give my conclusions in Chapter 6. Finally, I summarize my current work in Chapter 7 and future extensions in Chapter 8. By the end, I hope to convince you that the interaction between a galaxy outflow and a primordial minihalo provides a formation pathway for present day halo globular clusters.

Contributors

Agent

Created

Date Created
  • 2012

157407-Thumbnail Image.png

Toward characterization of the epoch of reionization with redshifted 21 cm one-point statistics

Description

One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to

One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to this question can be largely uncovered in a relatively unexplored period in the history of the Universe known as the Epoch of Reionization (EoR), where radiation from the first generation of stars and galaxies ionized the neutral hydrogen gas in the intergalactic medium. The reionization process created "bubbles" of ionized regions around radiating sources that perturbed the matter density distribution and influenced the subsequent formation of stars and galaxies. Exactly how and when reionization occurred are currently up for debate. However, by studying this transformative period we hope to unravel the underlying astrophysics that governs the formation and evolution of the first stars and galaxies.

The most promising method to study reionization is 21 cm tomography, which aims to map the 3D distribution of the neutral hydrogen gas using the 21 cm emission lines from the spin-flip transition of neutral hydrogen atoms. Several radio interferometers operating at frequencies below 200 MHz are conducting these experiments, but direct images of the observed fields are limited due to contamination from astrophysical foreground sources and other systematics, forcing current and upcoming analyses to be statistical.

In this dissertation, I studied one-point statistics of the 21 cm brightness temperature intensity fluctuations, focusing on how measurements from observations would be biased by different contaminations and instrumental systematics and how to mitigate them. I develop simulation tools to generate realistic mock 21 cm observations of the Hydrogen Epoch of Reionization Array (HERA), a new interferometer being constructed in the Karoo desert in South Africa, and perform sensitivity analysis of the telescope to one-point statistics using the mock observations. I show that HERA will be able to measure 21 cm one-point statistics with sufficient sensitivity if foreground contaminations can be sufficiently mitigated. In the presence of foreground, I develop a rolling foreground avoidance filter technique and demonstrate that it can be used to obtain noise-limited measurements with HERA. To assess these techniques on real data, I obtain measurements from the legacy data from the first season observation of the Murchison Widefield Array (MWA) and perform additional high-precision radio interferometric simulations for comparison. Through these works, I have developed new statistical tools that are complementary to the power spectrum method that is currently the central focus of the majority of analyses. In addition to confirming power spectrum detections, one-point statistics offer additional information on the distribution of the 21 cm fluctuations, which is directly linked to the astrophysics of structure formation.

Contributors

Agent

Created

Date Created
  • 2019

156741-Thumbnail Image.png

Green pea galaxies: physical properties of low-redshift analogs of high-redshift Lyman-alpha emitters

Description

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work.

Contributors

Agent

Created

Date Created
  • 2018

150723-Thumbnail Image.png

Evolution of intermediate redshift galaxies: physical properties and mass-metallicity relation

Description

The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of

The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and high redshift Lyman break galaxies which are mostly catas- trophic outliers. For a sample of 1138 galaxies with spectroscopic redshifts in the GOODS North and South fields at z < 1.6, the application of the surface luminosity prior reduces the fraction of galaxies with redshift deviation sigma(z) > 0.2 from 15.0% to 10.4%. The second part of this dissertation presents the study of the chemical evolution of the star-forming galaxies. The Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) grism Survey effectively selects emission line galaxies (ELGs) to mAB ~ 27. Follow-up Magellan LDSS3+IMACS spectroscopy of the HST/ACS PEARS ELGs confirms an accuracy of sigma_z = 0.006 for the HST/ACS PEARS grism redshifts. The luminosity-metallicity (L-Z) relation and the mass-metallicity (M-Z) relation of the PEARS ELGs at z ~ 0.6 are offset by ~ - 0.8 dex in metallicity for a given rest-frame B absolute magnitude and stellar mass relative to the local relations from SDSS galaxies. The offsets in both relations are ~ - 0.4 dex larger than that given by other samples at same redshifts, which are demonstrated to be due to the selection of different physical properties of the PEARS ELGs: low metallicities, very blue colors, small sizes, compact disturbed morphologies, high SSFR > 10^-9 yr^-1 , and high gas fraction. The downsizing effect, the tidal interacting induced inflow of metal-poor gas, and the SNe driven galactic winds outflows, may account for the significant offset of the PEARS galaxies in the L-Z and the M-Z relations relative to the local relations. The detection of the emission lines of ELGs down to m ~ 26 mag in the HST/ACS PEARS + HST/WCF3 ERS NIR composit grism spectra enables to extend the study of the evolution of the L-Z and M-Z relations to 0.6 < z < 2.4.

Contributors

Agent

Created

Date Created
  • 2012