Matching Items (2)
150592-Thumbnail Image.png
Description
Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to

Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to superior optical property in the near infrared (NIR) window. Light absorbed by the nanorod can be dissipated as heat efficiently or re-emitted by the particle. However, the limitations for clinical translation of gold nanorods include low yields, poor stability, depth-restricted imaging, and resistance of cancer cells to hyperthermia, are severe. A novel high-throughput synthesis method was employed to significantly increase in yields of solid and porous gold nanorods/wires. Stable functional nanoassemblies and nanomaterials were generated by interfacing gold nanorods with a variety of polymeric and polypeptide-based coatings, resulting in unique properties of polymer-gold nanorod assemblies and composites. Here the use of these modified gold nanorods in a variety of applications including optical sensors, cancer therapeutics, and nanobiomaterials were described.
ContributorsHuang, Huang-Chiao (Author) / Rege, Kaushal (Thesis advisor) / Sierks, Michael (Committee member) / Dai, Lenore (Committee member) / Ramakrishna, B (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2012
154707-Thumbnail Image.png
Description
Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems

Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both frequency and dose quantity. The models in this work were first used to estimate parameters from preclinical experimental data, to identify biologically realistic parameter values. Insight gained from the mathematical analysis in the first model, allowed for numerical analysis to explore optimal treatment regimens of combination oncolytic virotherapy and dendritic vaccinations. Permutations accounting for treatment scheduled were done to find regimens that reduce tumor size. Observations from the produced data lead to in silico exploration of immune-viral interactions. Results suggest under optimal settings, combination treatment works better than monotherapy of either type. The most optimal result suggests treatment over a longer period of time, with fractioned doses, while reducing the total dendritic vaccination quantity, and maintaining the maximum virotherapy used in the experimental work.
ContributorsSummer, Ilyssa Aimee (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Nagy, John (Thesis advisor) / Mubayi, Anuj (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2016