Matching Items (2)

157073-Thumbnail Image.png

Comparative Study of HVAC and HVDC Transmission Systems With Proposed Machine Learning Algorithms for Fault Location Detection

Description

High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the

High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has dramatically increased. For instance, Kuwait has recently announced a renewable project to be completed in 2035; this project aims to produce 15% of the countrys energy consumption from renewable sources. However, facilities that use renewable sources, such as solar and wind, to provide clean energy, are mostly placed in remote areas, as their installation requires a massive space of free land. Consequently, considerable challenges arise in terms of transmitting power generated from renewable sources of energy in remote areas to urban areas for further consumption.

The present thesis investigates different transmission line systems for transmitting bulk energy from renewable sources. Specifically, two systems will be focused on: the high-voltage alternating current (HVAC) system and the high-voltage direct current (HVDC) system. In order to determine the most efficient way of transmitting bulk energy from renewable sources, different aspects of the aforementioned two types of systems are analyzed. Limitations inherent in both HVAC and HVDC systems have been discussed.

At present, artificial intelligence plays an important role in power system control and monitoring. Consequently, in this thesis, the fault issue has been analyzed in transmission systems, with a specific consideration of machine learning tools that can help monitor transmission systems by detecting fault locations. These tools, called models, are used to analyze the collected data. In the present thesis, a focus on such models as linear regression (LR), K-nearest neighbors (KNN), linear support vector machine (LSVM) , and adaptive boost (AdaBoost). Finally, the accuracy of each model is evaluated and discussed. The machine learning concept introduced in the present thesis lays down the foundation for future research in this area so that to enable further research on the efficient ways to improve the performance of transmission line components and power systems.

Contributors

Agent

Created

Date Created
  • 2019

150480-Thumbnail Image.png

Transmission expansion planning with large scale renewable resource integration

Description

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at a low variable cost and produce less greenhouse gases as compared to conventional generators. However, some of the complex issues with renewable resource integration are due to their intermittent and non-dispatchable characteristics. Furthermore, most renewable resources are location constrained and are usually located in regions with insufficient transmission facilities. In order to deal with the challenges presented by renewable resources as compared to conventional resources, the transmission network expansion planning procedures need to be modified. New high voltage lines need to be constructed to connect the remote renewable resources to the existing transmission network to serve the load centers. Moreover, the existing transmission facilities may need to be reinforced to accommodate the large scale penetration of renewable resource. This thesis proposes a methodology for transmission expansion planning with large-scale integration of renewable resources, mainly solar and wind generation. An optimization model is used to determine the lines to be constructed or upgraded for several scenarios of varying levels of renewable resource penetration. The various scenarios to be considered are obtained from a production cost model that analyses the effects that renewable resources have on the transmission network over the planning horizon. A realistic test bed was created using the data for solar and wind resource penetration in the state of Arizona. The results of the production cost model and the optimization model were subjected to tests to ensure that the North American Electric Reliability Corporation (NERC) mandated N-1 contingency criterion is satisfied. Furthermore, a cost versus benefit analysis was performed to ensure that the proposed transmission plan is economically beneficial.

Contributors

Agent

Created

Date Created
  • 2012