Matching Items (4)
Filtering by

Clear all filters

150476-Thumbnail Image.png
Description
Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns.

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns. However, architectures based on RC decomposition are not efficient for large input size data which have to be stored in external memories based Synchronous Dynamic RAM (SDRAM). In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized input data is proposed. This architecture achieves very high throughput by exploiting the inherent parallelism due to a novel 2-D decomposition and by utilizing the row-wise burst access pattern of the SDRAM external memory. In addition, an automatic IP generator is provided for mapping this architecture onto a reconfigurable platform of Xilinx Virtex-5 devices. For a 2048x2048 input size, the proposed architecture is 1.96 times faster than RC decomposition based implementation under the same memory constraints, and also outperforms other existing implementations. While the proposed 2-D DFT IP can achieve high performance, its output is bit-reversed. For systems where the output is required to be in natural order, use of this DFT IP would result in timing overhead. To solve this problem, a new bandwidth-efficient MD DFT IP that is transpose-free and produces outputs in natural order is proposed. It is based on a novel decomposition algorithm that takes into account the output order, FPGA resources, and the characteristics of off-chip memory access. An IP generator is designed and integrated into an in-house FPGA development platform, AlgoFLEX, for easy verification and fast integration. The corresponding 2-D and 3-D DFT architectures are ported onto the BEE3 board and their performance measured and analyzed. The results shows that the architecture can maintain the maximum memory bandwidth throughout the whole procedure while avoiding matrix transpose operations used in most other MD DFT implementations. The proposed architecture has also been ported onto the Xilinx ML605 board. When clocked at 100 MHz, 2048x2048 images with complex single-precision can be processed in less than 27 ms. Finally, transpose-free imaging flows for range-Doppler algorithm (RDA) and chirp-scaling algorithm (CSA) in SAR imaging are proposed. The corresponding implementations take advantage of the memory access patterns designed for the MD DFT IP and have superior timing performance. The RDA and CSA flows are mapped onto a unified architecture which is implemented on an FPGA platform. When clocked at 100MHz, the RDA and CSA computations with data size 4096x4096 can be completed in 323ms and 162ms, respectively. This implementation outperforms existing SAR image accelerators based on FPGA and GPU.
ContributorsYu, Chi-Li (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Karam, Lina (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2012
151215-Thumbnail Image.png
Description
Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures

Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs have larger values for low frequency subband coefficients and smaller values for high frequency subband coefficients. Next, we present use of voltage overscaling to reduce the data-path power consumption of JPEG codecs. We propose an algorithm-specific technique which exploits the characteristics of the quantized coefficients after zig-zag scan to mitigate errors introduced by aggressive voltage scaling. Third, we investigate the effect of reducing dynamic range for datapath energy reduction. We analyze the effect of truncation error and propose a scheme that estimates the mean value of the truncation error during the pre-computation stage and compensates for this error. Such a scheme is very effective for reducing the noise power in applications that are dominated by additions and multiplications such as FIR filter and transform computation. We also present a novel sum of absolute difference (SAD) scheme that is based on most significant bit truncation. The proposed scheme exploits the fact that most of the absolute difference (AD) calculations result in small values, and most of the large AD values do not contribute to the SAD values of the blocks that are selected. Such a scheme is highly effective in reducing the energy consumption of motion estimation and intra-prediction kernels in video codecs. Finally, we present several hybrid energy-saving techniques based on combination of voltage scaling, computation reduction and dynamic range reduction that further reduce the energy consumption while keeping the performance degradation very low. For instance, a combination of computation reduction and dynamic range reduction for Discrete Cosine Transform shows on average, 33% to 46% reduction in energy consumption while incurring only 0.5dB to 1.5dB loss in PSNR.
ContributorsEmre, Yunus (Author) / Chakrabarti, Chaitali (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
153935-Thumbnail Image.png
Description
Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of radiation hardening, essentials of clock design and impact of particle strikes on clocks in detail and presents design techniques for hardening complete clock systems in digital ICs.

Since the sequential elements play a key role in deciding the robustness of any clocking strategy, hardened-by-design implementations of triple-mode redundant (TMR) pulse clocked latches and physical design methodologies for using TMR master-slave flip-flops in application specific ICs (ASICs) are proposed. A novel temporal pulse clocked latch design for low power radiation hardened applications is also proposed. Techniques for designing custom RHBD clock distribution networks (clock spines) and ASIC clock trees for a radiation hardened microprocessor using standard CAD tools are presented. A framework for analyzing the vulnerabilities of clock trees in general, and study the parameters that contribute the most to the tree’s failure, including impact on controlled latches is provided. This is then used to design an integrated temporally redundant clock tree and pulse clocked flip-flop based clocking scheme that is robust to single event transients (SETs) and single event upsets (SEUs). Subsequently, designing robust clock delay lines for use in double data rate (DDRx) memory applications is studied in detail. Several modules of the proposed radiation hardened all-digital delay locked loop are designed and studied. Many of the circuits proposed in this entire body of work have been implemented and tested on a standard low-power 90-nm process.
ContributorsChellappa, Srivatsan (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Cao, Yu (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
155918-Thumbnail Image.png
Description
The aging mechanism in devices is prone to uncertainties due to dynamic stress conditions. In AMS circuits these can lead to momentary fluctuations in circuit voltage that may be missed by a compact model and hence cause unpredictable failure. Firstly, multiple aging effects in the devices may have underlying correlations.

The aging mechanism in devices is prone to uncertainties due to dynamic stress conditions. In AMS circuits these can lead to momentary fluctuations in circuit voltage that may be missed by a compact model and hence cause unpredictable failure. Firstly, multiple aging effects in the devices may have underlying correlations. The generation of new traps during TDDB may significantly accelerate BTI, since these traps are close to the dielectric-Si interface in scaled technology. Secondly, the prevalent reliability analysis lacks a direct validation of the lifetime of devices and circuits. The aging mechanism of BTI causes gradual degradation of the device leading to threshold voltage shift and increasing the failure rate. In the 28nm HKMG technology, contribution of BTI to NMOS degradation has become significant at high temperature as compared to Channel Hot Carrier (CHC). This requires revising the End of Lifetime (EOL) calculation based on contribution from induvial aging effects especially in feedback loops. Conventionally, aging in devices is extrapolated from a short-term measurement, but this practice results in unreliable prediction of EOL caused by variability in initial parameters and stress conditions. To mitigate the extrapolation issues and improve predictability, this work aims at providing a new approach to test the device to EOL in a fast and controllable manner. The contributions of this thesis include: (1) based on stochastic trapping/de-trapping mechanism, new compact BTI models are developed and verified with 14nm FinFET and 28nm HKMG data. Moreover, these models are implemented into circuit simulation, illustrating a significant increase in failure rate due to accelerated BTI, (2) developing a model to predict accelerated aging under special conditions like feedback loops and stacked inverters, (3) introducing a feedback loop based test methodology called Adaptive Accelerated Aging (AAA) that can generate accurate aging data till EOL, (4) presenting simulation and experimental data for the models and providing test setup for multiple stress conditions, including those for achieving EOL in 1 hour device as well as ring oscillator (RO) circuit for validation of the proposed methodology, and (5) scaling these models for finding a guard band for VLSI design circuits that can provide realistic aging impact.
ContributorsPatra, Devyani (Author) / Cao, Yu (Thesis advisor) / Barnaby, Hugh (Thesis advisor) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2017