Matching Items (8)

150470-Thumbnail Image.png

Using array seismology to study planetary interiors

Description

Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as

Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as well as its evolution. This research centers on using data from seismic arrays, networks of seismic sensors, and array processing methodologies to map the fine scale structure in the Earth's upper mantle and deep layering in the Moon - Earth and Moon are the only two planetary bodies with seismic available data for such analyses. Small-scale structure in the Earth's upper mantle can give rise to seismic wave scattering. I studied high frequency data from the Warramunga Array in Australia using array seismology. I developed and employed back-projection schemes to map the possible upper mantle scattering or reflection locations. Mapped scatterers show good correlation to strong lateral P-wave velocity gradients in tomography models and may be associated with the complex tectonic history beneath north of Australia. The minimum scale of scatterers relates to the seismic wavelength, which is roughly between 5 and 10 km in the upper mantle for the frequencies we study. The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972 that continuously recorded lunar ground motion until late 1977. I studied the deep lunar interior with array methods applied to the legacy APSE dataset. The stack results suggest the presence of a solid inner and fluid outer core, overlain by a partially molten boundary layer, but their reflector impedance contrasts and reflector depths are not well constrained. With a rapidly increasing number of available modern broadband data, I developed a package, Discovery Using Ducttape Excessively (DUDE), to quickly generate plots for a comprehensive view of earthquake data. These plots facilitate discovery of unexpected phenomena. This dissertation identifies evidence for small-scale heterogeneities in Earth's upper mantle, and deeper lunar layering structure. Planetary interiors are complex with the heterogeneities on many scales, and discontinuities of variable character. This research demonstrates that seismic array methods are well-suited for interrogating heterogeneous phenomena, especially considering the recent rapid expansion of easily available dense network data.

Contributors

Agent

Created

Date Created
  • 2011

154544-Thumbnail Image.png

Breaking ground on the Moon and Mars: reconstructing lunar tectonic evolution and Martian central pit crater formation

Description

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon’s surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris – selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction.

Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims – consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

Contributors

Agent

Created

Date Created
  • 2016

154314-Thumbnail Image.png

Ponds, flows, and ejecta of impact cratering and volcanism: a remote sensing perspective of a dynamic Moon

Description

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.

Contributors

Agent

Created

Date Created
  • 2016

156119-Thumbnail Image.png

The formation and degradation of planetary surfaces: impact features and explosive volcanic landforms on the Moon and Mars

Description

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.

Contributors

Agent

Created

Date Created
  • 2018

156004-Thumbnail Image.png

Investigations of water-bearing environments on the Moon and Mars

Description

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.

Contributors

Agent

Created

Date Created
  • 2017

154934-Thumbnail Image.png

Remote sensing of Martian sedimentary deposits and lunar pyroclastic deposits

Description

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host crater imply that wind caused the erosion of central mounds. An in depth study of a single central mound (Mt. Sharp within Gale crater) was also conducted. Thermal Emission Imaging System Visible Imaging Subsystem (THEMIS-VIS) mosaics in grayscale and false color were used to characterize the morphology and color variations in and around Gale crater. One result of this study is that dunes within Gale crater vary in false color composites from blue to purple, and that these color differences may be due to changes in dust cover, grain size, and/or composition. To further investigate dune fields on Mars, albedo variations at eight dune fields were studied based on the hypothesis that a dune’s ripple migration rate is correlated to its albedo. This study concluded that a dune’s minimum albedo does not have a simple correlation with its ripple migration rate. Instead, dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster-moving dunes.

On the Moon, explosive volcanic deposits within Oppenheimer crater that were emplaced ballistically were investigated. Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer mid-infrared data, LRO Camera images, and Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra were used to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. The mineralogy and iron-content of the pyroclastic deposits vary significantly (including examples of potentially very high iron compositions), which indicates variability in eruption style. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.

Contributors

Agent

Created

Date Created
  • 2016

152354-Thumbnail Image.png

Impact-related processes on Mercury and the Moon

Description

Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The

Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, particularly on the Moon and Mercury, where the results remain uncomplicated by atmospheric effects, plate tectonics, or interactions with water and ices. Crater measurements, used to determine relative and absolute ages for geologic units by relating the cumulative crater frequency per unit area to radiometrically-determined ages from returned samples, are sensitive to the solar incidence angle of images used for counts. Earlier work is quantitatively improved by investigating this important effect and showing that absolute model ages are most accurately determined using images with incidence angles between 65° and 80°, and equilibrium crater diameter estimates are most accurate at ~80° incidence angle. A statistical method is developed using crater size-frequencies to distinguish lunar mare age units in the absence of spectral differences. Applied to the Moon, the resulting areal crater densities confidently identify expansive units with >300–500 my age differences, distinguish non-obvious secondaries, and determine that an area >1×104 km2 provides statistically robust crater measurements. This areal crater density method is also applied to the spectrally-homogeneous volcanic northern smooth plains (NSP) on Mercury. Although crater counts and observations of embayed craters indicate that the NSP experienced at least two resurfacing episodes, no observable age units are observed using areal crater density measurements, so smooth plains emplacement occurred over a relatively short timescale (<500 my). For the first time, the distribution of impact melt on Mercury and the Moon are compared at high resolution. Mercurian craters with diameters ≥30 km have a greater areal extent of interior melt deposits than similarly sized lunar craters, a result consistent with melt-generation model predictions. The effects of shaking on compositional sorting within a granular regolith are experimentally tested, demonstrating the possibility of mechanical segregation of particles in the lunar regolith. These results provide at least one explanation toward understanding the inconsistencies between lunar remote sensing datasets and are important for future spacecraft sample return missions.

Contributors

Agent

Created

Date Created
  • 2013

150819-Thumbnail Image.png

Development and applications of a multispectral microscopic imager for the in situ exploration of planetary surfaces

Description

Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information

Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information is considered crucial for correct petrogenetic interpretations and will be key observations for assessing the potential for past habitability on Mars. These data will also enable the selection of the highest value samples for further analysis and potential caching for return to Earth. The Multispectral Microscopic Imager (MMI), similar to a geologist's hand lens, advances the capabilities of current microimagers by providing multispectral, microscale reflectance images of geological samples, where each image pixel is comprised of a 21-band spectrum ranging from 463 to 1735 nm. To better understand the capabilities of the MMI in future surface missions to the Moon and Mars, geological samples comprising a range of Mars-relevant analog environments as well as 18 lunar rocks and four soils, from the Apollo collection were analyzed with the MMI. Results indicate that the MMI images resolve the fine-scale microtextural features of samples, and provide important information to help constrain mineral composition. Spectral end-member mapping revealed the distribution of Fe-bearing minerals (silicates and oxides), along with the presence of hydrated minerals. In the case of the lunar samples, the MMI observations also revealed the presence of opaques, glasses, and in some cases, the effects of space weathering in samples. MMI-based petrogenetic interpretations compare favorably with laboratory observations (including VNIR spectroscopy, XRD, and thin section petrography) and previously published analyses in the literature (for the lunar samples). The MMI was also deployed as part of the 2010 ILSO-ISRU field test on the slopes of Mauna Kea, Hawaii and inside the GeoLab as part of the 2011 Desert RATS field test at the Black Point Lava Flow in northern Arizona to better assess the performance of the MMI under realistic field conditions (including daylight illumination) and mission constraints to support human exploration. The MMI successfully imaged rocks and soils in outcrops and samples under field conditions and mission operation scenarios, revealing the value of the MMI to support future rover and astronaut exploration of planetary surfaces.

Contributors

Agent

Created

Date Created
  • 2012