Matching Items (5)
Filtering by

Clear all filters

151434-Thumbnail Image.png
Description
Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to

Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to near-infrared. In this study, I use deep HST<\italic> imaging observations of three nearby star-forming galaxies (M83, NGC 4214, and CGCG 269-049) based on the HST<\italic> observations, in order to provide to construct color-magnitude and color-color diagrams of their resolved stellar populations. First, I select 50 regions in the spiral arm and inter-arm areas of M83, and determine the age distribution of the luminous stellar populations in each region. I developed an innovative method of star-by-star correction for internal extinction to improve stellar age and mass estimates. I compare the extinction-corrected ages of the 50 regions with those determined from several independent methods. The young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with a scenario where star formation is associated with the spiral arms, and stars form primarily in star clusters before dispersing on short timescales to form the field population. I address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. The same procedure is applied to nearby starbursting dwarf NGC 4214 to study the distributions of young and old stellar populations. Lastly, I describe the analysis of the HST<\italic> and Spitzer Space Telescope<\italic> observations of the extremely metal-poor dwarf galaxy (XMPG) CGCG 269-049 at a distance of 4.96 Mpc. This galaxy is one of the most metal-poor known with 12+log(O/H)=7.43. I find clear evidence for the presence of an old stellar population in CGCG~269-049, ruling out the possibility that this galaxy is forming its first generation of stars, as originally proposed for XMPGs. This comprehensive study of resolved stellar populations in three nearby galaxies provides detailed view of the current state of star formation and evolution of galaxies.
ContributorsKim, Hwihyun (Author) / Windhorst, Rogier A (Thesis advisor) / Jansen, Rolf A (Committee member) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
152990-Thumbnail Image.png
Description
I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.
ContributorsRichardson, Mark Lawrence Albert (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Timmes, Frank (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
150742-Thumbnail Image.png
Description
The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas later collapses into new stars, which are able to form heavier elements due to the presence of the new elements. When we observe the abundances in a stellar regions, we are able to glean the astrophysical phenomena that occurred prior to its formation. I compile spectroscopic abundance data from 49 literature sources for 46 elements across 2836 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. I analyze the variability of the spread in abundance measurements reported for the same star by different surveys, the corresponding stellar atmosphere parameters adopted by various abundance determination methods, and the effect of normalizing all abundances to the same solar scale. The resulting abundance ratios [X/Fe] as a function of [Fe/H] are consistent with stellar nucleosynthetic processes and known Galactic thin-disk trends. I analyze the element abundances for 204 known exoplanet host-stars. In general, I find that exoplanet host-stars are not enriched more than the surrounding population of stars, with the exception of iron. I examine the stellar abundances with respect to both stellar and planetary physical properties, such as orbital period, eccentricity, planetary mass, stellar mass, and stellar color. My data confirms that exoplanet hosts are enriched in [Fe/H] but not in the refractory elements, per the self-enrichment theory for stellar composition. Lastly, I apply the Hypatia Catalog to the Catalog of Potentially Habitable Stellar Systems in order to investigate the abundances in the 1224 overlapping stars. By looking at stars similar to the Sun with respect to six bio-essential elements, I created maps that have located two ``habitability windows'' on the sky: (20.6hr, -4.8deg) and (22.6hr, -48.5deg). These windows may be of use in future targeted or beamed searches.
ContributorsHinkel, Natalie R (Author) / Timmes, Frank X (Thesis advisor) / Anbar, Ariel (Committee member) / Patience, Jennifer (Committee member) / Shumway, John (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
157761-Thumbnail Image.png
Description
In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over five orders of magnitude in galaxy luminosity. The effects of primordial metallicities on canonical star-forming laws is an open question: a growing body of evidence suggests that the current empirical star forming laws may not be valid in the unenriched, metal-poor environment of the very early universe.

In the modern universe, nearby dwarf galaxies with less than 1/10th the Solar metal abundance provide an opportunity to recalibrate our star formation laws and study the astrophysics of extremely metal-deficient (XMD) environments in detail. I assemble a sample of nearby dwarf galaxies, all within 100 megaparsecs, with nebular oxygen abundances between 1/5th and 1/50th Solar. I identify the subsample of these galaxies with space-based mid- and far-infrared data, and investigate the effects of extreme metallicities on the infrared-radio relationship. For ten of these galaxies, I have acquired 40 hours of observations with the Jansky Very Large Array (JVLA). C-band (4-8 GHz) radio continuum emission is detected from all 10 of these galaxies. These represent the first radio continuum detections from seven galaxies in this sample: Leo A, UGC 4704, HS 0822+3542, SBS 0940+544, and SBS 1129+476. The radio continuum in these galaxies is strongly associated with the presence of optical H-alpha emission, with spectral slopes suggesting a mix of thermal and non-thermal sources. I use the ratio of the radio and far-infrared emission to investigate behavior of the C-band (4-8 GHz) radio/infrared relation at metallicities below 1/10th Solar.

I compare the low metallicity sample with the 4.8 GHz radio/infrared relationship from the KINGFISHER nearby galaxy sample Tabatabaei et al. 2017 and to the 1.4 GHz radio/infrared relationship from the blue compact dwarf galaxy sample of Wu et al. 2008. The infrared/radio ratio q of the low metallicity galaxies is below the average q of star forming galaxies in the modern universe. I compare these galaxies' infrared and radio luminosities to their corresponding Halpha luminosities, and find that both the infrared/Halpha and the radio/H-alpha ratios are reduced by nearly 1 dex in the low metallicity sample vs. higher metallicity galaxies; however the deficit is not straightforwardly interpreted as a metallicity effect.
ContributorsMonkiewicz, Jacqueline Ann (Author) / Bowman, Judd (Thesis advisor) / Scowen, Paul (Thesis advisor) / Mauskopf, Philip (Committee member) / Scannapieco, Evan (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2018