Matching Items (2)
Filtering by

Clear all filters

152990-Thumbnail Image.png
Description
I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.
ContributorsRichardson, Mark Lawrence Albert (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Timmes, Frank (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
157637-Thumbnail Image.png
Description
Learning how properties of galaxies such as star formation, galaxy interactions, chemical composition, and others evolve to produce the modern universe has long been a goal of extragalactic astronomy. In recent years, grism spectroscopy from the Hubble Space Telescope (HST) has provided a means to study these properties with spectroscopy

Learning how properties of galaxies such as star formation, galaxy interactions, chemical composition, and others evolve to produce the modern universe has long been a goal of extragalactic astronomy. In recent years, grism spectroscopy from the Hubble Space Telescope (HST) has provided a means to study these properties with spectroscopy while avoiding the limitations of ground-based observation. In this dissertation, I present several studies wherein I used HST G102 grism spectroscopy from the Faint Infrared Grism Survey (FIGS) to investigate these fundamental properties of galaxies and how they interact and evolve. In the first study, I combined the grism spectra with broadband photometry to produce a catalog of redshifts with improved accuracy, reducing the median redshift error from 3\% to 2\%. With this redshift catalog, I conducted a systematic search for galaxy overdensities in the FIGS fields, producing a list of 24 significant candidates. In the second study, I developed a method for identifying emission line galaxy (ELG) candidates from continuum-subtracted 1D spectra, and identified 71 ELGs in one FIGS field. In matching MUSE/VLT spectra, I measured the [OIII]$\lambda$4363 emission line for 14 FIGS ELGs, and used this to measure their $T_e$-based gas-phase metallicities. These ELGs show a low-metallicity offset on the Mass-Metallicity Relation, and I demonstrated that this offset can be explained by recent star formation. In the third study, I expanded the ELG search to all four FIGS fields, identifying 208 H$\alpha$, [OIII]$\lambda\lambda$4959,5007, and [OII]$\lambda\lambda$3727,3729 line emitters. I compiled a catalog of line fluxes, redshifts, and equivalent widths. I combined this catalog with the overdensity study to investigate a possible relationship between line luminosity, star formation, and an ELG's environment. In the fourth study, I usde 15 FIGS H$\alpha$ emitters and 49 ``green pea'' line emitters to compare H$\alpha$ and the far-UV continuum as tracers of star formation. I explored a correlation between the H$\alpha$-FUV ratio and the ratio of [OIII]$\lambda\lambda$4959,5007 to [OII]$\lambda\lambda$3727,3729 and its implications for star formation history.
ContributorsPharo, John (Author) / Malhotra, Sangeeta (Thesis advisor) / Young, Patrick (Thesis advisor) / Rhoads, James (Committee member) / Scannapieco, Evan (Committee member) / Borthakur, Sanchayeeta (Committee member) / Arizona State University (Publisher)
Created2019