Matching Items (4)
Filtering by

Clear all filters

152570-Thumbnail Image.png
Description
Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal

Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal lobe lesions, and some cognitive disorders. Second, temporal processing has been shown to be relatively stable over time. In order to expand on this line of research, we examined the effects of a different, but relevant visual experience (i.e., implied motion) on cortical processing. Previous fMRI studies have indicated that static images that imply motion activate area V5 or middle temporal/medial superior temporal complex (MT/MST+) of the visual cortex, the same brain region that is activated in response to real motion. Therefore, we hypothesized that visual experience of implied motion may parallel the positive relationship between real directional-motion and cortical processing. Seven subjects participated in a visual task of implied motion for 4 days, and a pre- and post-test of cortical processing. The results indicated that performance on implied motion is systematically different from performance on a dot motion task. Despite individual differences in performance, overall cortical processing increased from day 1 to day 4.
ContributorsVasefi, Aresh (Author) / Nanez, Jose (Thesis advisor) / Duran, Nicholas (Committee member) / Keil, Thomas J. (Committee member) / Arizona State University (Publisher)
Created2014
150440-Thumbnail Image.png
Description
Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.
ContributorsSadaka, Nabil (Author) / Karam, Lina J (Thesis advisor) / Spanias, Andreas S (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Abousleman, Glen P (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
155148-Thumbnail Image.png
Description
Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well as in the presence of image distortions.



Existing VA models are

Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well as in the presence of image distortions.



Existing VA models are traditionally evaluated by using VA metrics that quantify the match between predicted saliency and fixation data obtained from eye-tracking experiments on human observers. Though there is a considerable number of objective VA metrics, there exists no study that validates that these metrics are adequate for the evaluation of VA models. This work constructs a VA Quality (VAQ) Database by subjectively assessing the prediction performance of VA models on distortion-free images. Additionally, shortcomings in existing metrics are discussed through illustrative examples and a new metric that uses local weights based on fixation density and that overcomes these flaws, is proposed. The proposed VA metric outperforms all other popular existing metrics in terms of the correlation with subjective ratings.



In practice, the image quality is affected by a host of factors at several stages of the image processing pipeline such as acquisition, compression, and transmission. However, none of the existing studies have discussed the subjective and objective evaluation of visual saliency models in the presence of distortion. In this work, a Distortion-based Visual Attention Quality (DVAQ) subjective database is constructed to evaluate the quality of VA maps for images in the presence of distortions. For creating this database, saliency maps obtained from images subjected to various types of distortions, including blur, noise and compression, and varying levels of distortion severity are rated by human observers in terms of their visual resemblance to corresponding ground-truth fixation density maps. The performance of traditionally used as well as recently proposed VA metrics are evaluated by correlating their scores with the human subjective ratings. In addition, an objective evaluation of 20 state-of-the-art VA models is performed using the top-performing VA metrics together with a study of how the VA models’ prediction performance changes with different types and levels of distortions.
ContributorsGide, Milind Subhash (Author) / Karam, Lina J (Thesis advisor) / Abousleman, Glen (Committee member) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2016
153609-Thumbnail Image.png
Description
Magnocellular-Dorsal pathway’s function had been related to reading ability, and visual perceptual learning can effectively increase the function of this neural pathway. Previous researches training people with a traditional dot motion paradigm and an integrated visual perceptual training “video game” called Ultimeyes pro, all showed improvement with regard to people’s

Magnocellular-Dorsal pathway’s function had been related to reading ability, and visual perceptual learning can effectively increase the function of this neural pathway. Previous researches training people with a traditional dot motion paradigm and an integrated visual perceptual training “video game” called Ultimeyes pro, all showed improvement with regard to people’s reading performance. This research used 2 paradigms in 2 groups in order to compare the 2 paradigms’ effect on improving people’s reading ability. We also measured participants’ critical flicker fusion threshold (CFFT), which is related to word decoding ability. The result did not show significant improvement of reading performance in each group, but overall the reading speed improved significantly. The result for CFFT in each group only showed significant improvement among people who trained with Ultimeyes pro. This result supports that the beneficial effect of visual perceptual learning training on people’s reading ability, and it suggests that Ultimeyes pro is more efficient than the traditional dot motion paradigm, and might have more application value.
ContributorsZhou, Tianyou (Author) / Nanez, Jose E (Thesis advisor) / Robles-Sotelo, Elias (Committee member) / Duran, Nicholas (Committee member) / Arizona State University (Publisher)
Created2015