Matching Items (13)
Filtering by

Clear all filters

152006-Thumbnail Image.png
Description
When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are

When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are searching. However, unlike laboratory experiments, searchers in the real-world rarely have perfect knowledge regarding the appearance of their target. In five experiments (with nearly 1,000 participants), we examined how the precision of the observer's template affects their ability to conduct visual search. Specifically, we simulated template imprecision in two ways: First, by contaminating our searchers' templates with inaccurate features, and second, by introducing extraneous features to the template that were unhelpful. In those experiments we recorded the eye movements of our searchers in order to make inferences regarding the extent to which attentional guidance and decision-making are hindered by template imprecision. We also examined a third way in which templates may become imprecise; namely, that they may deteriorate over time. Overall, our findings support a dual-function theory of the target template, and highlight the importance of examining template precision in future research.
ContributorsHout, Michael C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Reichle, Erik (Committee member) / Arizona State University (Publisher)
Created2013
152678-Thumbnail Image.png
Description
Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
152801-Thumbnail Image.png
Description
Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults

Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults participated in the study that measured intelligibility (percent words correct) of dysarthric speech in auditory versus audiovisual conditions. Participants were then separated into two groups: older adults (age range 47 to 68) and young adults (age range 19 to 36) to examine the influence of age. Findings revealed that all participants, regardless of age, improved their ability to recognize dysarthric speech when visual speech was added to the auditory signal. The magnitude of this benefit, however, was greater for older adults when compared with younger adults. These results inform our understanding of how visual speech information influences understanding of dysarthric speech.
ContributorsFall, Elizabeth (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Gray, Shelley (Committee member) / Arizona State University (Publisher)
Created2014
152570-Thumbnail Image.png
Description
Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal

Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal lobe lesions, and some cognitive disorders. Second, temporal processing has been shown to be relatively stable over time. In order to expand on this line of research, we examined the effects of a different, but relevant visual experience (i.e., implied motion) on cortical processing. Previous fMRI studies have indicated that static images that imply motion activate area V5 or middle temporal/medial superior temporal complex (MT/MST+) of the visual cortex, the same brain region that is activated in response to real motion. Therefore, we hypothesized that visual experience of implied motion may parallel the positive relationship between real directional-motion and cortical processing. Seven subjects participated in a visual task of implied motion for 4 days, and a pre- and post-test of cortical processing. The results indicated that performance on implied motion is systematically different from performance on a dot motion task. Despite individual differences in performance, overall cortical processing increased from day 1 to day 4.
ContributorsVasefi, Aresh (Author) / Nanez, Jose (Thesis advisor) / Duran, Nicholas (Committee member) / Keil, Thomas J. (Committee member) / Arizona State University (Publisher)
Created2014
152859-Thumbnail Image.png
Description
Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts

Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts over time (Chun and Jiang, 1998; 1999). Given that people learn these repeated distractor configurations and identities, might they also implicitly encode semantic information about distractors, if this information is predictive of the target location? We investigated this question with a series of visual search experiments using real-world stimuli within a contextual cueing paradigm (Chun and Jiang, 1998). Specifically, we tested whether participants could learn, through experience, that the target images they are searching for are always located near specific categories of distractors, such as food items or animals. We also varied the spatial consistency of target locations, in order to rule out implicit learning of repeated target locations. Results suggest that participants implicitly learned the target-predictive categories of distractors and used this information during search, although these results failed to reach significance. This lack of significance may have been due the relative simplicity of the search task, however, and several new experiments are proposed to further investigate whether repeated category information can benefit search.
ContributorsWalenchok, Stephen C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / Arizona State University (Publisher)
Created2014
153453-Thumbnail Image.png
Description
The present study describes audiovisual sentence recognition in normal hearing listeners, bimodal cochlear implant (CI) listeners and bilateral CI listeners. This study explores a new set of sentences (the AzAV sentences) that were created to have equal auditory intelligibility and equal gain from visual information.

The aims of Experiment I

The present study describes audiovisual sentence recognition in normal hearing listeners, bimodal cochlear implant (CI) listeners and bilateral CI listeners. This study explores a new set of sentences (the AzAV sentences) that were created to have equal auditory intelligibility and equal gain from visual information.

The aims of Experiment I were to (i) compare the lip reading difficulty of the AzAV sentences to that of other sentence materials, (ii) compare the speech-reading ability of CI listeners to that of normal-hearing listeners and (iii) assess the gain in speech understanding when listeners have both auditory and visual information from easy-to-lip-read and difficult-to-lip read sentences. In addition, the sentence lists were subjected to a multi-level text analysis to determine the factors that make sentences easy or difficult to speech read.

The results of Experiment I showed that (i) the AzAV sentences were relatively difficult to lip read, (ii) that CI listeners and normal-hearing listeners did not differ in lip reading ability and (iii) that sentences with low lip-reading intelligibility (10-15 % correct) provide about a 30 percentage point improvement in speech understanding when added to the acoustic stimulus, while sentences with high lip-reading intelligibility (30-60 % correct) provide about a 50 percentage point improvement in the same comparison. The multi-level text analyses showed that the familiarity of phrases in the sentences was the primary driving factor that affects the lip reading difficulty.

The aim of Experiment II was to investigate the value, when visual information is present, of bimodal hearing and bilateral cochlear implants. The results of Experiment II showed that when visual information is present, low-frequency acoustic hearing can be of value to speech understanding for patients fit with a single CI. However, when visual information was available no gain was seen from the provision of a second CI, i.e., bilateral CIs. As was the case in Experiment I, visual information provided about a 30 percentage point improvement in speech understanding.
ContributorsWang, Shuai (Author) / Dorman, Michael (Thesis advisor) / Berisha, Visar (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2015
150440-Thumbnail Image.png
Description
Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.
ContributorsSadaka, Nabil (Author) / Karam, Lina J (Thesis advisor) / Spanias, Andreas S (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Abousleman, Glen P (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150444-Thumbnail Image.png
Description
The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on

The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on chromatic cues. The current study was designed to use grey, green, and red stimuli to successively limit the amount of information available to the dorsal stream pathway, while providing roughly equal information to the ventral system. Twenty-one participants identified shapes that were presented in grey, green, and red and were defined by dynamic occlusion. The shapes were then presented again in a static condition where the maximum occlusions were presented as before, but without motion. Results showed an interaction between the motion and static conditions in that when the speed of presentation increased, performance in the motion conditions became significantly less accurate than in the static conditions. The grey and green motion conditions crossed static performance at the same point, whereas the red motion condition crossed at a much slower speed. These data are consistent with a model of neural processing in which the main visual systems share information. Moreover, they support the notion that presenting stimuli in specific colors may help isolate perceptual pathways for scientific investigation. Given the potential for chromatic cues to target specific visual systems in the performance of dynamic object recognition, exploring these perceptual parameters may help our understanding of human visual processing.
ContributorsHolloway, Steven R. (Author) / McBeath, Michael K. (Thesis advisor) / Homa, Donald (Committee member) / Macknik, Stephen L. (Committee member) / Arizona State University (Publisher)
Created2011
157098-Thumbnail Image.png
Description
Previous research has shown that perceptual illusions can enhance golf putting performance, and the effect has been explained as being due to enhanced expectancies. The present study was designed to further understand this effect by measuring putting in 3 additional variations to the Ebbinghaus illusion and by measuring putting kinematics.

Previous research has shown that perceptual illusions can enhance golf putting performance, and the effect has been explained as being due to enhanced expectancies. The present study was designed to further understand this effect by measuring putting in 3 additional variations to the Ebbinghaus illusion and by measuring putting kinematics. Nineteen ASU students with minimal golf experience putted to the following illusion conditions: a target, a target surrounded by small circles, a target surrounded by large circles, a target surrounded by both large and small circles, no target surrounded by small circles and no target surrounded by large circles. Neither perceived target size nor putting error was significantly affected by the illusion conditions. Time to peak speed was found to be significantly greater for the two conditions with no target, and lowest for the condition with the target by itself. Suggestions for future research include having split groups with and without perceived performance feedback as well as general performance feedback. The size conditions utilized within this study should continue to be explored as more consistent data could be collected within groups.
ContributorsCoon, Victoria (Author) / Gray, Rob (Thesis advisor) / Roscoe, Rod (Committee member) / Branaghan, Russ (Committee member) / Arizona State University (Publisher)
Created2019
154879-Thumbnail Image.png
Description
The label-feedback hypothesis (Lupyan, 2007) proposes that language can modulate low- and high-level visual processing, such as “priming” a visual object. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, resulting in shorter reaction times (RTs) and higher accuracy. However, a design limitation made their

The label-feedback hypothesis (Lupyan, 2007) proposes that language can modulate low- and high-level visual processing, such as “priming” a visual object. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, resulting in shorter reaction times (RTs) and higher accuracy. However, a design limitation made their results challenging to assess. This study evaluated whether self-directed speech influences target locating (i.e. attentional guidance) or target identification after location (i.e. decision time), testing whether the Label Feedback Effect reflects changes in visual attention or some other mechanism (e.g. template maintenance in working memory). Across three experiments, search RTs and eye movements were analyzed from four within-subject conditions. People spoke target names, nonwords, irrelevant (absent) object names, or irrelevant (present) object names. Speaking target names weakly facilitates visual search, but speaking different names strongly inhibits search. The most parsimonious account is that language affects target maintenance during search, rather than visual perception.
ContributorsHebert, Katherine P (Author) / Goldinger, Stephen D (Thesis advisor) / Rogalsky, Corianne (Committee member) / McClure, Samuel M. (Committee member) / Arizona State University (Publisher)
Created2016