Matching Items (4)
Filtering by

Clear all filters

152607-Thumbnail Image.png
Description
The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.
ContributorsAdams, Byron A (Author) / Whipple, Kelin X (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Heimsath, Arjun M (Committee member) / Arrowsmith, Ramon (Committee member) / Hurtado, Jose M (Committee member) / Arizona State University (Publisher)
Created2014
150434-Thumbnail Image.png
Description
Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the

Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of the issue has been hampered by poor accessibility, paucity of robust depositional age constraints, and disputed provenance of many units in the succession. To achieve a better understanding of the stratigraphy of the Indus Basin, multispectral remote sensing image analysis resulted in a new geologic map that is consistent with field observations and previously published datasets, but suggests a substantial revision and simplification of the commonly assumed stratigraphic architecture of the basin. This stratigraphic framework guided a series of new provenance studies, wherein detrital U-Pb geochronology, 40Ar/39Ar and (U-Th)/He thermochronology, and trace-element geochemistry not only discount the hypothesis that collision began in the Early Oligocene, but also demonstrate that both Indian and Eurasian detritus arrived in the basin prior to deposition of the last marine limestone, constraining the age of collision to older than Early Eocene. Detrital (U-Th)/He thermochronology further elucidates the thermal history of the basin. Thus, we constrain backthrusting, thought to be an important mechanism by which Miocene convergence was accommodated, to between 11-7 Ma. Finally, an unprecedented conventional (U-Th)/He thermochronologic dataset was generated from a modern river sand to assess steady state assumptions of the source region. Using these data, the question of the minimum number of dates required for robust interpretation was critically evaluated. The application of a newly developed (U-Th)/He UV-laser-microprobe thermochronologic technique confirmed the results of the conventional dataset. This technique improves the practical utility of detrital mineral (U-Th)/He thermochronology, and will facilitate future studies of this type.
ContributorsTripathy, Alka (Author) / Hodges, Kip V (Thesis advisor) / Semken, Steven (Committee member) / Van Soest, Matthijs C (Committee member) / Whipple, Kelin X (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2011
151075-Thumbnail Image.png
Description
The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change

The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (~28˚39'54"N; 83˚35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system.
ContributorsMcDermott, Jeni Amber (Author) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Thesis advisor) / Van Soest, Matthijs C (Committee member) / Arrowsmith, Ramon (Committee member) / Semkin, Steven (Committee member) / Arizona State University (Publisher)
Created2012
155856-Thumbnail Image.png
Description
The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s

The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s most significant rain shadows. Also, glacial and fluvial processes eroded the Everest massif over shorter timescales. In this work, I review new bedrock and detrital thermochronological and geochronological data and both one- and two-dimensional thermal-mechanical modeling that provides insights on the age range and rates of tectonic and erosional processes in this region.

A strand of the South Tibetan detachment system (STDS), a series of prominent normal-sense structures that dip to the north and strike along the Himalayan spine, is exposed in the Rongbuk valley near Everest. Using thermochronometric techniques, thermal-kinematic modeling, and published (U-Th)/Pb geochronology, I show exhumation rates were high (~3-4 mm/a) from at least 20 to 13 Ma because of slip on the STDS. Subsequently, exhumation rates dropped drastically to ≤ 0.5 mm/a and remain low today. However, thermochronometric datasets and thermal-kinematic modeling results from Nepal south of Everest reveal a sharp transition in cooling ages and exhumation rates across a major knickpoint in the river profile, corresponding to the modern-day Himalayan rainfall transition. To the north of this transition, exhumation histories are similar to those in Tibet. Conversely, < 3 km south of the transition, exhumation rates were relatively low until the Pliocene, when they increased to ~4 mm/a before slowing at ~3 Ma. Such contrasting exhumation histories over a short distance suggest that bedrock exhumation rates correlate with modern precipitation patterns in deep time, however, there are competing interpretations regarding this correlation.

My work also provides insights regarding how processes of glacial erosion act in a glacio-fluvial valley north of Everest. Integrated laser ablation U/Pb and (U-Th)/He dating of detrital zircon from fluvial and moraine sediments reveal sourcing from distinctive areas of the catchment. In general, the glacial advances eroded material from lower elevations, while the glacial outwash system carries material from higher elevations.
ContributorsSchultz, Mary Hannah (Author) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Committee member) / Semken, Steven (Committee member) / Heimsath, Arjun M (Committee member) / Till, Christy (Committee member) / Arizona State University (Publisher)
Created2017