Matching Items (2)

Filtering by

Clear all filters

156960-Thumbnail Image.png

On the Statistical and Scaling Properties of Observed and Simulated Soil Moisture

Description

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.

Contributors

Agent

Created

Date Created
  • 2018

156929-Thumbnail Image.png

Assessing Usable Ground and Surface Water Level Correlation Factors in the Western United States

Description

The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have

The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have been observed to be significantly correlated to usable ground and surface water levels. The assessment of water level changes and their influences on a semi-national level is needed to support planning and decision making for water resource management at local levels. Although many studies have been done in Ground and Surface Water (GSW) trend analysis, very few have attempted determine correlations with other factors. The number of studies done on correlation factors at a semi-national scale and near decadal temporal scale is even fewer. In this study, freshwater resources in GSW changes from 2004 to 2017 were quantified and used to determine if and how environmental and social variables are related to GSW changes using publicly available remotely sensed and census data. Results indicate that mean annual changes of GSW of the study period are significantly correlated with LULC changes related to deforestation, urbanization, environmental trends, as well as social variables. Further analysis indicates a strong correlation in the rate of change of GSW to LULC changes related to deforestation, environmental trends, as well as social variables. GSW slope trend analysis also reveals a negative trend in California, New Mexico, Arizona, and Nevada. Whereas a positive GSW trend is evident in the northeast part of the study area. GSW trends were found to be somewhat consistent in the states of Utah, Idaho, and Colorado, implying that there was no GSW changes over time in these states.

Contributors

Agent

Created

Date Created
  • 2018