Matching Items (7)
Filtering by

Clear all filters

151687-Thumbnail Image.png
Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

ContributorsPourshams-Manzouri, Tina (Author) / Kaloush, Kamil (Thesis advisor) / Wang, Zhihua (Thesis advisor) / Zapata, Claudia E. (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151676-Thumbnail Image.png
Description
Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The

Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The C* Line Integral test has shown promise to capture crack resistance and propagation within asphalt concrete. In addition, the fracture mechanics based C* parameter considers the time-dependent creep behavior of the materials. However, previous research was limited and lacked standardized test procedure and detailed data analysis methods were not fully presented. This dissertation describes the development and refinement of the C* Fracture Test (CFT) based on concepts of the C* line integral test. The CFT is a promising test to assess crack propagation and fracture resistance especially in modified mixtures. A detailed CFT test protocol was developed based on a laboratory study of different specimen sizes and test conditions. CFT numerical simulations agreed with laboratory results and indicated that the maximum horizontal tensile stress (Mode I) occurs at the crack tip but diminishes at longer crack lengths when shear stress (Mode II) becomes present. Using CFT test results and the principles of time-temperature superposition, a crack growth rate master curve was successfully developed to describe crack growth over a range of test temperatures. This master curve can be applied to pavement design and analysis to describe crack propagation as a function of traffic conditions and pavement temperatures. Several plant mixtures were subjected to the CFT and results showed differences in resistance to crack propagation, especially when comparing an asphalt rubber mixture to a conventional one. Results indicated that crack propagation is ideally captured within a given range of dynamic modulus values. Crack growth rates and C* prediction models were successfully developed for all unmodified mixtures in the CFT database. These models can be used to predict creep crack propagation and the C* parameter when laboratory testing is not feasible. Finally, a conceptual approach to incorporate crack growth rate and the C* parameter into pavement design and analysis was presented.
ContributorsStempihar, Jeffrey (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152749-Thumbnail Image.png
Description

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objectives of this research study were to evaluate the rheological and aging properties of binders modified with RuBindTM and its compatibility with warm mix technology. Two binders were used for this study: Performance Grade (PG) 70-10 and PG 64-22, both modified with 25% by weight of asphalt binder. Laboratory test included: penetration, softening point, viscosity, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Tests were conducted under original, short and long -term aging conditions. Observations from the test results indicated that there is a better improvement when RuBindTM is added to a softer binder, in this case a PG 64-22. For short-term aging, the modified binder showed a similar aging index compared to the control. However, long term aging was favorable for the modified binders. The DSR results showed that the PG 64-22 binder high temperature would increase to 82 °C, and PG 70-10 would be increased to 76 °C, both favorable results. The intermediate temperatures also showed an improvement in fatigue resistance (as measured by the Superpave PG grading parameter |G*|sinä). Test results at low temperatures did not show a substantial improvement, but the results were favorable showing reduced stiffness with the addition of RuBindTM. The evaluation of warm mix additive using EvothermTM confirmed the manufacturer information that the product should have no negative effects on the binder properties; that is the modified binder can be used in a warm mix process. These results were encouraging and the recommendation was to continue with a follow up study with mixture tests using the RuBindTM modified binders.

ContributorsMedina, Jose R. (Jose Roberto) (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
150527-Thumbnail Image.png
Description
The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt mixes using a blend of polypropylene and aramid fibers, The

The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt mixes using a blend of polypropylene and aramid fibers, The main objective of this study was to evaluate the effect of adding different fiber dosages on the laboratory performance of both asphalt binder and mixture. The laboratory study was conducted on sixteen different dosages and blends of the fibers, with various combinations of polypropylene and aramid, using binder tests as well as hot mix asphalt tests. The binder tests included: penetration, softing point, and Brookfield viscosity tests. The asphalt mixture tests included the dynamic modulus, and indirect tensile strength. The binder test results indicated that the best viscosity - temperature susceptibility performance would be from the blend of three dosages of polypropylene and one dosage of aramid, the dynamic modulus test results also confirmed this finding. Overall, in almost every case, the addition of fibers resulted in an increase in mixture stiffness regardless of fiber content. From the indirect tensile strength results, the polypropylene fibers had less of an effect on post peak failure than the aramid fibers. Overall, the aramid fibers yielded better results than the polypropylene fibers. This study has important implications for the future of pavement design and the prospect of using optimal dosages of polypropylene and aramid fibers in further research to further determine their long-term performance and characteristics used in real world applications.
ContributorsAlrajhi, Ashraf (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Witzcak, Matthew (Committee member) / Arizona State University (Publisher)
Created2012
156317-Thumbnail Image.png
Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently,

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

ContributorsBeGell, Dirk (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
156729-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier known as Reacted and Activated Rubber (RAR) is one such technology. RAR (industrially known as “RARX”) acts like an Enhanced Elastomeric Asphalt Extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objective of this research study was first to perform a Superpave mix design for determination of optimum asphalt content with 35% RAR by weight of binder; and secondly, analyse the performance of RAR modified mixtures prepared using the dry process against Crumb Rubber Modified (CRM) mixtures prepared using the wet process by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to fabricate RAR and CRM mixtures and Performance Grade (PG) 70-10 was used to fabricate Control mixtures for this study. Laboratory tests included: Dynamic Modulus Test, Flow Number Test, Tensile Strength Ratio, Axial Cyclic Fatigue Test and C* Fracture Test. Observations from test results indicated that RAR mixes prepared through the dry process had excellent fatigue life, moisture resistance and cracking resistance compared to the other mixtures.

ContributorsShah, Janak (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
154281-Thumbnail Image.png
Description
The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC and to improve the reliability of AC material performance prediction by using Fine Aggregate Matrix (FAM) phase data. The goal of the study is divided into four objectives; 1) development of a reliability framework for fatigue life prediction of AC materials using the simplified viscoelastic continuum damage (S-VECD) model, 2) development of test protocols for FAM in similar loading conditions as AC, 3) evaluation of the mechanical linkages between the AC and FAM mix through upscaling analysis, and 4) investigation of the hypothesis that the reliability of fatigue life prediction of AC can be improved with FAM data modeling.

In this research effort, a reliability framework is developed using Monte Carlo simulation for predicting the fatigue life of AC material using the S-VECD model. The reliability analysis reveals that the fatigue life prediction is very sensitive to the uncertainty in the input variables. FAM testing in similar loading conditions as AC, and upscaling of AC modulus and damage response using FAM properties from a relatively simple homogenized continuum approach shows promising results. The FAM phase fatigue life prediction and upscaling of FAM results to AC show more reliable fatigue life prediction than the fatigue life prediction of AC material using its experimental data. To assess the sensitivity of fatigue life prediction model to uncertainty in the input variables, a parametric sensitivity study is conducted on the S-VECD model. Overall, the findings from this research show promising results both in terms of upscaling FAM to AC properties and the reliability of fatigue prediction in AC using experimental data on FAM.
ContributorsGudipudi, Padmini Priyadarsini (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2016