Matching Items (14)

Filtering by

Clear all filters

150527-Thumbnail Image.png

Fiber dosage effects in asphalt binders and hot mix asphalt mixtures

Description

The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt

The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt mixes using a blend of polypropylene and aramid fibers, The main objective of this study was to evaluate the effect of adding different fiber dosages on the laboratory performance of both asphalt binder and mixture. The laboratory study was conducted on sixteen different dosages and blends of the fibers, with various combinations of polypropylene and aramid, using binder tests as well as hot mix asphalt tests. The binder tests included: penetration, softing point, and Brookfield viscosity tests. The asphalt mixture tests included the dynamic modulus, and indirect tensile strength. The binder test results indicated that the best viscosity - temperature susceptibility performance would be from the blend of three dosages of polypropylene and one dosage of aramid, the dynamic modulus test results also confirmed this finding. Overall, in almost every case, the addition of fibers resulted in an increase in mixture stiffness regardless of fiber content. From the indirect tensile strength results, the polypropylene fibers had less of an effect on post peak failure than the aramid fibers. Overall, the aramid fibers yielded better results than the polypropylene fibers. This study has important implications for the future of pavement design and the prospect of using optimal dosages of polypropylene and aramid fibers in further research to further determine their long-term performance and characteristics used in real world applications.

Contributors

Agent

Created

Date Created
2012

Reliability associated with the estimation of soil resilient modulus at different hierarchical levels of pavement design

Description

Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the

Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which is a model used in the Mechanistic-Empirical Pavement Design Guide to estimate the soil long-term equilibrium resilient modulus. The stochastic evaluation is accomplished by taking the deterministic equations in the EICM and applying stochastic procedures to obtain a mean and variance associated with the final design parameter, the resilient modulus at equilibrium condition. In addition to the stochastic evaluation, different statistical analyses were applied to determine that the uses of hierarchical levels are valid in the unbound pavement material design and the climatic region has an impact on the final design resilient moduli at equilibrium. After determining that the climatic regions and the hierarchical levels are valid, reliability was applied to the resilient moduli at equilibrium. Finally, the American Association of State Highway and Transportation Officials (AASHTO) design concept based on the Structural Number (SN) was applied in order to illustrate the true implications the hierarchical levels of design and the variability associated with environmental effects and soil properties have in the design of pavement structures. The stochastic solutions developed as part of this thesis work together with the SN design concept were applied to five soils with different resilient moduli at optimum compaction condition in order to evaluate the variability associated with the resilient moduli at equilibrium condition. These soils were evaluated in five different climatic regions ranging from arid to extremely wet conditions. The analysis showed that by using the most accurate input parameters obtained from laboratory testing (hierarchical Level 1) instead of Level 3 analysis could potentially save the State Department of Transportation up to 10.12 inches of asphalt in arid and semi-arid regions.

Contributors

Agent

Created

Date Created
2011

150383-Thumbnail Image.png

Pore water pressure response of a soil subjected to traffic loading under saturated and unsaturated conditions

Description

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further research, the proposed models may become a powerful tool not only to overcome testing limitations but also to enhance current design practices and to prevent soil failure due to excessive development of pore water pressure.

Contributors

Agent

Created

Date Created
2011

151687-Thumbnail Image.png

Pavement temperature effects on overall urban heat island

Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

Contributors

Agent

Created

Date Created
2013

154627-Thumbnail Image.png

Pavement deterioration modeling using historical roghness data

Description

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual maintenance and rehabilitation strategies to their road network.

The objective of the work in this study was to develop a methodology to evaluate and predict pavement roughness over the pavement service life. Unlike previous studies, a unique aspect of this work was the use of non-linear mathematical function, sigmoidal growth function, to model the IRI data and provide agencies with the information needed for decision making in asset management and funding allocation. The analysis included data from two major databases (case studies): Long Term Pavement Performance (LTPP) and the Minnesota Department of Transportation MnROAD research program. Each case study analyzed periodic IRI measurements, which were used to develop the sigmoidal models.

The analysis aimed to demonstrate several concepts; that the LTPP and MnROAD roughness data could be represented using the sigmoidal growth function, that periodic IRI measurements collected for road sections with similar characteristics could be processed to develop an IRI curve representing the pavement deterioration for this group, and that pavement deterioration using historical IRI data can provide insight on traffic loading, material, and climate effects. The results of the two case studies concluded that in general, pavement sections without drainage systems, narrower lanes, higher traffic, or measured in the outermost lane were observed to have more rapid deterioration trends than their counterparts.

Overall, this study demonstrated that the sigmoidal growth function is a viable option for roughness deterioration modeling. This research not only to demonstrated how historical roughness can be modeled, but also how the same framework could be applied to other measures of pavement performance which deteriorate in a similar manner, including distress severity, present serviceability rating, and friction loss. These sigmoidal models are regarded to provide better understanding of particular pavement network deterioration, which in turn can provide value in asset management and resource allocation planning.

Contributors

Agent

Created

Date Created
2016

154281-Thumbnail Image.png

Investigation and improvement in reliability of asphalt concrete fatigue modeling using fine aggregate matrix phase

Description

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC and to improve the reliability of AC material performance prediction by using Fine Aggregate Matrix (FAM) phase data. The goal of the study is divided into four objectives; 1) development of a reliability framework for fatigue life prediction of AC materials using the simplified viscoelastic continuum damage (S-VECD) model, 2) development of test protocols for FAM in similar loading conditions as AC, 3) evaluation of the mechanical linkages between the AC and FAM mix through upscaling analysis, and 4) investigation of the hypothesis that the reliability of fatigue life prediction of AC can be improved with FAM data modeling.

In this research effort, a reliability framework is developed using Monte Carlo simulation for predicting the fatigue life of AC material using the S-VECD model. The reliability analysis reveals that the fatigue life prediction is very sensitive to the uncertainty in the input variables. FAM testing in similar loading conditions as AC, and upscaling of AC modulus and damage response using FAM properties from a relatively simple homogenized continuum approach shows promising results. The FAM phase fatigue life prediction and upscaling of FAM results to AC show more reliable fatigue life prediction than the fatigue life prediction of AC material using its experimental data. To assess the sensitivity of fatigue life prediction model to uncertainty in the input variables, a parametric sensitivity study is conducted on the S-VECD model. Overall, the findings from this research show promising results both in terms of upscaling FAM to AC properties and the reliability of fatigue prediction in AC using experimental data on FAM.

Contributors

Agent

Created

Date Created
2016

A study of heating and degradation of acrylonitrile-butadiene-styrene/polycarbonate polymer due to ultraviolet lasers illumination during localized pre-deposition heating for fused filament fabrication 3D printing

Description

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.

Contributors

Agent

Created

Date Created
2017

156317-Thumbnail Image.png

Utilization of thermoplastic mounting studs for simple performance testing on hot mix asphalt

Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

Contributors

Agent

Created

Date Created
2018

154158-Thumbnail Image.png

Development of PCI-based pavement performance model for management of road infrastructure system

Description

The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The

The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The objective of this research study was to develop a methodology for calculating a pavement condition index (PCI) based on historical distress data collected in the databases from Long-Term Pavement Performance (LTPP) program and Minnesota Road Research (Mn/ROAD) project. Excel™ templates were developed and successfully used to import distress data from both databases and directly calculate PCIs for test sections. Pavement performance master curve construction and verification based on the PCIs were also developed as part of this research effort. The analysis and results of LTPP data for several case studies indicated that the study approach is rational and yielded good to excellent statistical measures of accuracy.

It is believed that the InfoPaveTM LTPP and Mn/ROAD database can benefit from the PCI templates developed in this study, by making them available for users to compute PCIs for specific road sections of interest. In addition, the PCI-based performance model development can be also incorporated in future versions of InfoPaveTM. This study explored and analyzed asphalt pavement sections. However, the process can be also extended to Portland cement concrete test sections. State agencies are encouraged to implement similar analysis and modeling approach for their specific road distress data to validate the findings.

Contributors

Agent

Created

Date Created
2015

154129-Thumbnail Image.png

Pavement surfaces impact on local temperature and building cooling energy consumption

Description

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.

Contributors

Agent

Created

Date Created
2015