Matching Items (5)
Filtering by

Clear all filters

153265-Thumbnail Image.png
Description
Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system,

Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system, called Whispers, for computing it. Using

unsupervised machine learning techniques, Whispers uncovers themes in an

organization's document corpus, including previously unknown or unclassified

data. Then, by correlating the document with its authors, Whispers can

identify which data are easier to contain, and conversely which are at risk.

Using the Enron email database, Whispers constructs a social network segmented

by topic themes. This graph uncovers communication channels within the

organization. Using this social network, Whispers determines the risk of each

topic by measuring the rate at which simulated leaks are not detected. For the

Enron set, Whispers identified 18 separate topic themes between January 1999

and December 2000. The highest risk data emanated from the legal department

with a leakage risk as high as 60%.
ContributorsWright, Jeremy (Author) / Syrotiuk, Violet (Thesis advisor) / Davulcu, Hasan (Committee member) / Yau, Stephen (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
154704-Thumbnail Image.png
Description
E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The

E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The vulnerability exists in the reference implementation of the built-in “mail” functionality in popular languages like PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability can be exploited to inject additional headers and/or modify existing headers in an e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header Injection vulnerability and uses this mechanism to quantify the prevalence of E- Mail Header Injection vulnerabilities on the Internet. Using a black-box testing approach, the system crawled 21,675,680 URLs to find URLs which contained form fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms contained e-mail fields. The system used this data feed to discern the forms that could be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms were found to be injectable with more malicious payloads. The system tested 46,156 of these and was able to find 496 vulnerable URLs across 222 domains, which proves that the threat is widespread and deserves future research attention.
ContributorsChandramouli, Sai Prashanth (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2016
158081-Thumbnail Image.png
Description
Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational

Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational nature of the infrastructure abused for phishing, and discrepancies between theoretical and realistic anti-phishing systems. Although technical countermeasures cannot always compensate for the human weakness exploited by social engineers, maintaining a clear and up-to-date understanding of the motivation behind---and execution of---modern phishing attacks is essential to optimizing such countermeasures.

In this dissertation, I analyze the state of the anti-phishing ecosystem and show that phishers use evasion techniques, including cloaking, to bypass anti-phishing mitigations in hopes of maximizing the return-on-investment of their attacks. I develop three novel, scalable data-collection and analysis frameworks to pinpoint the ecosystem vulnerabilities that sophisticated phishing websites exploit. The frameworks, which operate on real-world data and are designed for continuous deployment by anti-phishing organizations, empirically measure the robustness of industry-standard anti-phishing blacklists (PhishFarm and PhishTime) and proactively detect and map phishing attacks prior to launch (Golden Hour). Using these frameworks, I conduct a longitudinal study of blacklist performance and the first large-scale end-to-end analysis of phishing attacks (from spamming through monetization). As a result, I thoroughly characterize modern phishing websites and identify desirable characteristics for enhanced anti-phishing systems, such as more reliable methods for the ecosystem to collectively detect phishing websites and meaningfully share the corresponding intelligence. In addition, findings from these studies led to actionable security recommendations that were implemented by key organizations within the ecosystem to help improve the security of Internet users worldwide.
ContributorsOest, Adam (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Johnson, RC (Committee member) / Arizona State University (Publisher)
Created2020
168593-Thumbnail Image.png
Description
Despite extensive research by the security community, cyberattacks such as phishing and Internet of Things (IoT) attacks remain profitable to criminals and continue to cause substantial damage not only to the victim users that they target, but also the organizations they impersonate. In recent years, phishing websites have taken the

Despite extensive research by the security community, cyberattacks such as phishing and Internet of Things (IoT) attacks remain profitable to criminals and continue to cause substantial damage not only to the victim users that they target, but also the organizations they impersonate. In recent years, phishing websites have taken the place of malware websites as the most prevalent web-based threat. Even though technical countermeasures effectively mitigate web-based malware, phishing websites continue to grow in sophistication and successfully slip past modern defenses. Phishing attack and its countermeasure have entered into a new era, where one side has upgraded their weapon, attempting to conquer the other. In addition, the amount and usage of IoT devices increases rapidly because of the development and deployment of 5G network. Although researchers have proposed secure execution environment, attacks targeting those devices can often succeed. Therefore, the security community desperately needs detection and prevention methodologies to fight against phishing and IoT attacks. In this dissertation, I design a framework, named CrawlPhish, to understand the prevalence and nature of such sophistications, including cloaking, in phishing attacks, which evade detections from the anti-phishing ecosystem by distinguishing the traffic between a crawler and a real Internet user and hence maximize the return-on-investment from phishing attacks. CrawlPhish also detects and categorizes client-side cloaking techniques in phishing with scalability and automation. Furthermore, I focus on the analysis redirection abuse in advanced phishing websites and hence propose mitigations to classify malicious redirection use via machine learning algorithms. Based on the observations from previous work, from the perspective of prevention, I design a novel anti-phishing system called Spartacus that can be deployed from the user end to completely neutralize phishing attacks. Lastly, inspired by Spartacus, I propose iCore, which proactively monitors the operations in the trusted execution environment to identify any maliciousness.
ContributorsZhang, Penghui (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Oest, Adam (Committee member) / Kapravelos, Alexandros (Committee member) / Arizona State University (Publisher)
Created2022