Matching Items (7)

158879-Thumbnail Image.png

Lateral Programmable Metallization Cells: Materials, Devices and Mechanisms

Description

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.

Contributors

Agent

Created

Date Created
  • 2020

153369-Thumbnail Image.png

Novel transparent composite electrodes and mixed oxide layers for improved flexible electronics

Description

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light emitting devices (OLED). The most commonly used transparent electrodes in optoelectronic applications is indium tin oxide (ITO) due to its low resistivity (~ 10−4 Ω-cm) and high transmittance (~ 80 %). However, the limited supply of indium and the growing demand for ITO make the resulting fabrication costs prohibitive for future industry. Thus, cost factors have promoted the search for inexpensive materials with good electric-optical properties.

The object of this work is to study the structure-property-processing relationship and optimize a suitable transparent electrode with the intent to optimize them for flexible optoelectronics applications. The work focuses on improved processing of the mixed oxide (indium gallium zinc oxide, IGZO) thin films for superior optical and electrical properties. The study focuses on two different methods of post-deposition annealing-microwave and conventional. The microwave annealing was seen to have the dual advantage of reduced time and lower temperature, as compared to conventional annealing. Another work focuses on an indium free transparent composite electrode (TCE) where a very thin metal layer is inserted between the two TCO layers. A novel Nb2O5/Ag/Nb2O5 multilayered structure can exhibit better electrical and optical properties than a single layered TCO thin film. The focus for low cost alternative leads to a TiO2/metal/TiO2 based TCE. A systematic study was done to understand the effect of metal thickness and substituting different metals (Ag, Cu or Au) on the opto-electrical properties of the TCEs. The TiO2/Ag/TiO2 with mid Ag thickness 9.5 nm has been optimized to have a sheet resistance of 5.7 Ohm/sq. average optical transmittance of 90 % at 550 nm and figure of merit with 61.4 ×10-3 Ω-1. The TCEs showed improved optical and electrical properties when annealed in forming gas and vacuum. These dielectric/metal/dielectric multilayer TCEs have lower total thickness and are more efficient than a single-layer ITO film.

Contributors

Agent

Created

Date Created
  • 2015

154201-Thumbnail Image.png

Characterization of oxide thin films and interfaces using transmission electron microscopy

Description

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS).

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects.

Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was measured using EELS, and decreased by ~1.0 eV as Ti4+ was substituted by Al3+. The damping of O-K EELS peaks confirmed the rise in oxygen vacancies. For Co-substituted STO films grown on Si, the EDS and EELS spectra across samples showed Co doping was quite random. The substitution of Ti4+ with Co3+ or Co2+ created associated oxygen vacancies for charge balance. Presence of oxygen vacancies was also confirmed by shift of Ti-L EELS peaks towards lower energy by ~0.4 eV. The crystal-field strength decreased by ~0.6 eV as Ti4+ was partially substituted by Co3+ or Co2+.

Spinel Co3O4 thin films grown on MgAl2O4 (110) were observed to have excellent crystalline quality. The structure of the Co3O4/MgAl2O4 interface was determined using HRTEM and image simulations. It was found that MgAl2O4 substrate is terminated with Al and oxygen. Stacking faults and associated strain fields in spinel Co3O4 were found along [111], [001], and [113] using Geometrical Phase Analysis.

NbO2 films on STO (111) were observed to be tetragonal with lattice parameter of 13.8 Å and NbO films on LSAT (111) were observed to be cubic with lattice parameter of 4.26 Å. HRTEM showed formation of high quality NbOx films and excellent coherent interface. HRTEM of SrAl4 on LAO (001) confirmed an island growth mode. The SrAl4 islands were highly crystalline with excellent epitaxial registry with LAO. By comparing HRTEM images with image simulations, the interface structure was determined to consist of Sr-terminated SrAl4 (001) on AlO2-terminated LAO (001).

Contributors

Agent

Created

Date Created
  • 2015

152384-Thumbnail Image.png

Synthesis and characterization of thionated reduced graphene oxides and their thin films

Description

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.

Contributors

Agent

Created

Date Created
  • 2013

157247-Thumbnail Image.png

Spray-Deposited Oxides for Applications in Solar Cells

Description

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV,

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost of electricity from PV remains about a factor of two higher than the fossil fuel (10¢/kWh). Widely-used commercial methods employed to generate PV energy, such as silicon or thin film-based technologies, are still expensive as they are processed through vacuum-based techniques. Therefore, it is desirable to find an alternative method that is open-air and continuous process for the mass production of solar cells.

The objective of the research in this thesis is to develop low-cost spray pyrolysis technique to synthesize oxides thin films for applications in solar cells. Chapter 4 and 5 discuss spray-deposited dielectric oxides for their applications in Si solar cells. In Chapter 4, a successful deposition of Al2O3 is demonstrated using water as the solvent which ensures a lower cost and safer process environment. Optical, electrical, and structural properties of spray-deposited Al2O3 are investigated and compared to the industrial standard Atomic Layer Deposition (ALD) Al2O3/Plasma Enhanced Chemical Vapor Deposition (PECVD) SiNx stack, to reveal the suitability of spray-deposited Al2O3 for rear passivation and optical trapping in p-type Si Passivated Emitter and Rear Cell (PERC) solar cells. In Chapter 5, The possibility of using low-cost spray-deposited ZrO2 as the antireflection coating for Si solar cells is investigated. Optical, electrical and structural properties of spray-deposited ZrO2 films are studied and compared to the industrial standard antireflection coating PECVD SiNx. In Chapter 6, spray-deposited hematite Fe2O3 and sol-gel prepared anatase TiO2 thin films are sulfurized by annealing in H2S to investigate the band gap narrowing by sulfur doping and explore the possibility of using ternary semiconductors for their application as solar absorbers.

Contributors

Agent

Created

Date Created
  • 2019

154279-Thumbnail Image.png

Flexible electronics powered by mixed metal oxide thin film transistors

Description

A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal

A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors.

Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors.

Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.

Contributors

Agent

Created

Date Created
  • 2016

150343-Thumbnail Image.png

Nano-bonding of silicon oxides-based surfaces at low temperature: bonding interphase modeling via molecular dynamics and characterization of bonding surfaces topography, hydro-affinity and free energy

Description

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared. By combining nanobonding experiments, TMAFM results, surface energy data, and ab-initio calculations, an atomistic model is derived and nanobonding is optimized. [1] US Patent 6,613,677 (9/2/03), 7,851,365 (12/14/10), [2] Patent Filed: 4/30/09, 10/1/2011

Contributors

Agent

Created

Date Created
  • 2011