Matching Items (3)
Filtering by

Clear all filters

150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
161831-Thumbnail Image.png
Description
Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in

Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in recent decades that have spurred river restoration programs in the United States. But what kind of governance does river restoration require that is different from allocative institutional set-ups? Are these recovery programs succeeding in restoring ecological health and resilience of the rivers? Do the programs contribute to social-ecological resilience of the river systems more broadly? This study aims to tackle these key questions for two Colorado River sub-basin recovery programs (one in the Upper Basin and one in the Lower Basin) through utilization of different frameworks and methodologies for each. Organizational resilience to institutional and biophysical disturbances varies, with the Upper Basin program being more resilient than the Lower Basin program. Ecological resilience as measured by beta diversity (for the Upper Basin) was a factor of the level of hydrological and technological interventions rather than an occurrence of the natural flow regime. This points to the fact that in a highly-dampened and managed system like the Colorado River, the dampened flow regime alone is not a significant factor in maintaining community diversity and ecological health. A broad-scale social-ecological analysis supports the finding that the natural feedback between social and ecological elements is broken and recovery efforts are more an attempt at resuscitating the river system to maintain a semblance of historic levels of fish populations and aquatic processes. Adaptive management pathways for the future need to address and build pathways to transformability into recovery planning to achieve resilience for the river system.
ContributorsSrinivasan, Jaishri (Author) / Schoon, Michael L (Thesis advisor) / Sabo, John L (Thesis advisor) / White, Dave D (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2021
171751-Thumbnail Image.png
Description
Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between

Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between environmental conditions, community structure, and ecosystem function. With climate change altering environmental conditions, understanding this mechanistic link is essential for predicting future community structure and ecosystem function. Competitive interactions and trait values in primary producers are often context dependent, whereby changes in environmental conditions and resources alter relationships between species and ecosystem processes. Well-established paradigms concerning how species in a community respond to each other and to environmental conditions may need to be re-evaluated in light of these environmental changes, particularly in highly variable systems. In this dissertation, I examine the role of primary producer functional traits on community structure and ecosystem function. Specifically, I test a conceptual framework that incorporates response traits, effect traits, and their interaction, in affecting primary producer communities and ecosystem function across different aquatic systems. First, I identified species-specific responses to intensifying hydrologic stressors important in controlling wetland plant community composition over time in an aridland stream. Second, I found that effect traits of submerged and emergent vegetation explained differences in ecosystem metabolism and carbon dynamics among permafrost mire thaw ponds. Next, I examined response-effect trait interactions by comparing two dominant wetland plant species over a water-stress gradient, finding that responses to changes in hydrology (i.e., altered tissue chemistry) in turn affect ecosystem processes (i.e., subsurface CO2 concentration). Finally, I demonstrate how indirect effects of diatom functional traits on water chemistry and ecosystem metabolism help explain disconnects between resource availability and productivity in the Colorado River. By expanding my understanding of how metabolic processes and carbon cycling in aquatic ecosystems vary across gradients in hydrology, vegetation, and organic matter, I contributed to my understanding of how communities influence ecosystem processes. A response-effect trait approach to understanding communities and ecosystems undergoing change may aid in predicting and mitigating the repercussions of future climate change.
ContributorsLauck, Marina Diane (Author) / Grimm, Nancy B (Thesis advisor) / Appling, Alison P (Committee member) / Childers, Dan E (Committee member) / Sabo, John L (Committee member) / Arizona State University (Publisher)
Created2022