Matching Items (6)
Filtering by

Clear all filters

152435-Thumbnail Image.png
Description
ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin

ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin C status and fat oxidation. This cross-sectional study investigates the relationship between plasma vitamin C and fat oxidation in 69 participants and between plasma vitamin C and body fatness in 82 participants. Participants were measured for substrate utilization via indirect calorimetry while at rest and measured for body fatness via DEXA scan. Participants provided a single fasting blood draw for analysis of plasma vitamin C. Results did not show a significant association between vitamin C and fat oxidation while at rest, therefore the data do not support the hypothesis that vitamin C status affects fat oxidation in a resting state. However, a significant inverse association was found between vitamin C and both total body fat percent and visceral fat.
ContributorsObermeyer, Lindsay (Author) / Johnston, Carol (Thesis advisor) / Hall, Rick (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2014
150305-Thumbnail Image.png
Description
Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without pre-extraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.
ContributorsSheng, Chieh (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2011
157409-Thumbnail Image.png
Description
Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically promoted by adding a fermentable substrate, which is broken down to short chain fatty acids, simple alcohols, and hydrogen. This study explored microbial chain elongation (MCE), instead of fermentation, to promote TCE reductive dechlorination. In MCE, microbes use simple substrates (e.g., acetate, ethanol) to build medium chain fatty acids and also produce hydrogen during this process. Soil microcosm using TCE and acetate and ethanol as MCE substrates were established under anaerobic conditions. In soil microcosms with synthetic groundwater and natural groundwater, ethene was the main product from TCE reductive dechlorination and butyrate and hydrogen were the main products from MCE. Transfer microcosms using TCE and either acetate and ethanol, ethanol, or acetate were also established. The transfers with TCE and ethanol showed the faster rates of reductive dechlorination and produced more elongated products (i.e., hexanoate). The microbial groups enriched in the soil microcosms likely responsible for chain elongation were most similar to Clostridium genus. These investigations showed the potential for synergistic microbial chain elongation and reductive dechlorination of chlorinated ethenes.
ContributorsRobles, Aide (Author) / Delgado, Anca G. (Thesis advisor) / Torres, Cesar I. (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2019
156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017
187821-Thumbnail Image.png
Description
In this work, secretion of free fatty acids (FFAs) and ω-hydroxy FFAs wasachieved in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and FFAs were detected by a novel fluorescence assay. Current methods of detecting FFA concentrations, including HPLC-based and GC-based methods or enzyme-based kits, have hindered research advancement due to their laborious

In this work, secretion of free fatty acids (FFAs) and ω-hydroxy FFAs wasachieved in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and FFAs were detected by a novel fluorescence assay. Current methods of detecting FFA concentrations, including HPLC-based and GC-based methods or enzyme-based kits, have hindered research advancement due to their laborious and/or expensive nature. The work herein establishes a novel, rapid, fluorescence-based assay for detecting total FFA concentrations secreted by Synechocystis FFA secretion strains. The novel FFA-detection assay demonstrates the efficacy of using Nile Red as a fluorescent reporter for laurate or palmitate at concentrations up to 500 µM in the presence of cationic surfactants. Total FFA concentrations in Synechocystis supernatants quantified by the novel, Nile Red fluorescence-based assay are demonstrated herein to be highly correlative to total FFA concentrations quantified by LC-MS; this correlation was seen in supernatant samples of wild type Synechocystis and Synechocystis FFA secretion strains, both in 96-well plates and 30-mL, aerated culture tubes. This work also establishes the expression of a cytochrome P450 fusion enzyme, CYP153A-CPRmut, or a monooxygenase system from Pseudomonas putida GPo1, AlkBGT, in FFA secretion strains of Synechocystis for the generation of ω-hydroxy laurate from laurate. After finding greatly increased ω-hydroxylation activity of CYP153A-CPRmut with concurrent superoxide dismutase and catalase overexpression, 55 or 1.5 µM of ω-hydroxy laurate were produced over five days by Synechocystis strains expressing CYP153A-CPRmut or AlkBGT, respectively. As further indication of the presence of reactive oxygen species affecting ω-hydroxy laurate production with Synechocystis strains expressing CYP153A-CPRmut, concentrations of ω-hydroxy laurate in the supernatant increased over two-fold in the presence of 250 µM of the anti-oxidant, methionine, in bench-scale cultures and in 96-well plate cultures. Additionally, a mutation at the 55th amino acid position in AlkB (tryptophan to cysteine; AlkBW55C), resulted in a more than two-fold shift in AlkB’s substrate preference from decanoate towards the desired substrate, laurate. As a result, Synechocystis expressing AlkBW55C could produce 5.9 µM ω-hydroxy laurate and 2.0 µM dodecanedioic acid over five days of growth.
ContributorsAshe, Christopher (Author) / Vermaas, Willem Fj (Thesis advisor, Committee member) / Wang, Xuan (Committee member) / Nielsen, David R (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2023
157944-Thumbnail Image.png
Description
Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions

Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions occurring among fermenters, lipid biohydrogenaters, and anode respiring bacteria (ARB) in ESF. The work begins by proving that ESF is effective in enhancing lipid wet-extraction from Scenedesmus acutus biomass, while also achieving “biohydrogenation” to produce saturated LCFAs. Increasing anode respiration effectively scavenges short chain fatty acids (SCFAs) generated by fermentation, reducing electron loss. However, the effectiveness of ESF depends on biochemical characteristics of the feeding biomass (FB). Four different FB batches yield different lipid-extraction performances, based on the composition of FB’s cellular structure. Finally, starting an ESF reactor with a long solid retention time (SRT), but then switching it to a short SRT provides high lipid extractability and volumetric production with low lipid los. Lipid fermenters can be flushed out with short a SRT, but starting with a short SRT fails achieve good results because fermenters needed to degrading algal protective layers also are flushed out and fail to recover when a long SRT is imposed. These results point to a potentially useful technology to harvest lipid from microalgae, as well as insight about how this technology can be best managed.
ContributorsLiu, Yuanzhen (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, César I (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2019