Matching Items (4)
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
155945-Thumbnail Image.png
Description
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid

In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, µ synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using H infinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition
ContributorsYao, Tong (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2017
168451-Thumbnail Image.png
Description
This dissertation examines modeling, design and control challenges associatedwith two classes of power converters: a direct current-direct current (DC-DC) step-down (buck) regulator and a 3-phase (3-ϕ) 4-wire direct current-alternating current (DC-AC) inverter. These are widely used for power transfer in a variety of industrial and personal applications. This motivates the precise quantification

This dissertation examines modeling, design and control challenges associatedwith two classes of power converters: a direct current-direct current (DC-DC) step-down (buck) regulator and a 3-phase (3-ϕ) 4-wire direct current-alternating current (DC-AC) inverter. These are widely used for power transfer in a variety of industrial and personal applications. This motivates the precise quantification of conditions under which existing modeling and design methods yield satisfactory designs, and the study of alternatives when they don’t. This dissertation describes a method utilizing Fourier components of the input square wave and the inductor-capacitor (LC) filter transfer function, which doesn’t require the small ripple approximation. Then, trade-offs associated with the choice of the filter order are analyzed for integrated buck converters with a constraint on their chip area. Design specifications which would justify using a fourth or sixth order filter instead of the widely used second order one are examined. Next, sampled-data (SD) control of a buck converter is analyzed. Three methods for the digital controller design are studied: analog design followed by discretization, direct digital design of a discretized plant, and a “lifting” based method wherein the sampling time is incorporated in the design process by lifting the continuous-time design plant before doing the controller design. Specifically, controller performance is quantified by studying the induced-L2 norm of the closed loop system for a range of switching/sampling frequencies. In the final segment of this dissertation, the inner-outer control loop, employed in inverters with an inductor-capacitor-inductor (LCL) output filter, is studied. Closed loop sensitivities for the loop broken at the error and the control are examined, demonstrating that traditional methods only address these properties for one loop-breaking point. New controllers are then provided for improving both sets of properties.
ContributorsSarkar, Aratrik (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jennie (Committee member) / Mittelmann, Hans D (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021
156713-Thumbnail Image.png
Description
In this dissertation, we present a H-infinity based multivariable control design methodology that can be used to systematically address design specifications at distinct feedback loop-breaking points. It is well understood that for multivariable systems, obtaining good/acceptable closed loop properties at one loop-breaking point does not mean the same at another.

In this dissertation, we present a H-infinity based multivariable control design methodology that can be used to systematically address design specifications at distinct feedback loop-breaking points. It is well understood that for multivariable systems, obtaining good/acceptable closed loop properties at one loop-breaking point does not mean the same at another. This is especially true for multivariable systems that are ill-conditioned (having high condition number and/or relative gain array and/or scaled condition number). We analyze the tradeoffs involved in shaping closed loop properties at these distinct loop-breaking points and illustrate through examples the existence of pareto optimal points associated with them. Further, we study the limitations and tradeoffs associated with shaping the properties in the presence of right half plane poles/zeros, limited available bandwidth and peak time-domain constraints. To address the above tradeoffs, we present a methodology for designing multiobjective constrained H-infinity based controllers, called Generalized Mixed Sensitivity (GMS), to effectively and efficiently shape properties at distinct loop-breaking points. The methodology accommodates a broad class of convex frequency- and time-domain design specifications. This is accomplished by exploiting the Youla-Jabr-Bongiorno-Kucera parameterization that transforms the nonlinear problem in the controller to an affine one in the Youla et al. parameter. Basis parameters that result in efficient approximation (using lesser number of basis terms) of the infinite-dimensional parameter are studied. Three state-of-the-art subgradient-based non-differentiable constrained convex optimization solvers, namely Analytic Center Cutting Plane Method (ACCPM), Kelley's CPM and SolvOpt are implemented and compared.

The above approach is used to design controllers for and tradeoff between several control properties of longitudinal dynamics of 3-DOF Hypersonic vehicle model -– one that is unstable, non-minimum phase and possesses significant coupling between channels. A hierarchical inner-outer loop control architecture is used to exploit additional feedback information in order to significantly help in making reasonable tradeoffs between properties at distinct loop-breaking points. The methodology is shown to generate very good designs –- designs that would be difficult to obtain without our presented methodology. Critical control tradeoffs associated are studied and compared with other design methods (e.g., classically motivated, standard mixed sensitivity) to further illustrate its power and transparency.
ContributorsPuttannaiah, Karan (Author) / Rodriguez, Armando A. (Thesis advisor) / Berman, Spring M. (Committee member) / Mittelmann, Hans D. (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2018