Matching Items (2)
Filtering by

Clear all filters

154757-Thumbnail Image.png
Description
Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance,

they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the

Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance,

they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the memory and computation cost

of keyword detection and speech recognition networks (or DNNs) are presented.

The first technique is based on representing all weights and biases by a small number of bits and mapping all nodal computations into fixed-point ones with minimal degradation in the

accuracy. Experiments conducted on the Resource Management (RM) database show that for the keyword detection neural network, representing the weights by 5 bits results in a 6 fold reduction in memory compared to a floating point implementation with very little loss in performance. Similarly, for the speech recognition neural network, representing the weights by 6 bits results in a 5 fold reduction in memory while maintaining an error rate similar to a floating point implementation. Additional reduction in memory is achieved by a technique called weight pruning,

where the weights are classified as sensitive and insensitive and the sensitive weights are represented with higher precision. A combination of these two techniques helps reduce the memory

footprint by 81 - 84% for speech recognition and keyword detection networks respectively.

Further reduction in memory size is achieved by judiciously dropping connections for large blocks of weights. The corresponding technique, termed coarse-grain sparsification, introduces

hardware-aware sparsity during DNN training, which leads to efficient weight memory compression and significant reduction in the number of computations during classification without

loss of accuracy. Keyword detection and speech recognition DNNs trained with 75% of the weights dropped and classified with 5-6 bit weight precision effectively reduced the weight memory

requirement by ~95% compared to a fully-connected network with double precision, while showing similar performance in keyword detection accuracy and word error rate.
ContributorsArunachalam, Sairam (Author) / Chakrabarti, Chaitali (Thesis advisor) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
157619-Thumbnail Image.png
Description
The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices.

While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to

The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices.

While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to remain competitive.

Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful CPUs with GPUs to accelerate the computation of deep neural networks (DNNs), which are the most common structures to perform ML operations.

But traditional von Neumann architectures are not optimized for the high memory bandwidth and massively parallel computation demands required by DNNs.

Hence, propelling research into non-von Neumann architectures to support the demands of DNNs.

The re-imagining of computer architectures to perform efficient DNN computations requires focusing on the prohibitive demands presented by DNNs and alleviating them. The two central challenges for efficient computation are (1) large memory storage and movement due to weights of the DNN and (2) massively parallel multiplications to compute the DNN output.

Introducing sparsity into the DNNs, where certain percentage of either the weights or the outputs of the DNN are zero, greatly helps with both challenges. This along with algorithm-hardware co-design to compress the DNNs is demonstrated to provide efficient solutions to greatly reduce the power consumption of hardware that compute DNNs. Additionally, exploring emerging technologies such as non-volatile memories and 3-D stacking of silicon in conjunction with algorithm-hardware co-design architectures will pave the way for the next generation of mobile devices.

Towards the objectives stated above, our specific contributions include (a) an architecture based on resistive crosspoint array that can update all values stored and compute matrix vector multiplication in parallel within a single cycle, (b) a framework of training DNNs with a block-wise sparsity to drastically reduce memory storage and total number of computations required to compute the output of DNNs, (c) the exploration of hardware implementations of sparse DNNs and architectural guidelines to reduce power consumption for the implementations in monolithic 3D integrated circuits, and (d) a prototype chip in 65nm CMOS accelerator for long-short term memory networks trained with the proposed block-wise sparsity scheme.
ContributorsKadetotad, Deepak Vinayak (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Vrudhula, Sarma (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2019