Matching Items (2)
Filtering by

Clear all filters

155086-Thumbnail Image.png
Description
CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1×1016 cm-3 to 1×1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group.

Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 μs is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated.

The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (1017 cm-3). External luminescence quantum efficiency of over 98% can be realized for luminescence refrigeration with the proper design of optical structures.
ContributorsZhao, Xinhao (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Holman, Zachary (Committee member) / Chowdhury, Srabanti (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155190-Thumbnail Image.png
Description
Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The

Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The record polycrystalline CdTe thin-film cell efficiency has reached 22.1%, with excellent short-circuit current densities (Jsc) and fill-factors (FF). However, the Voc (~900 mV) is still far below the theoretical value, due to the large non-radiative recombination in the polycrystalline CdTe absorber, and the low-level p-type doping.

Monocrystalline CdTe/MgCdTe double-heterostructures (DHs) grown on lattice-matched InSb substrates have demonstrated impressively long carrier lifetimes in both unintentionally doped and Indium-doped n-type CdTe samples. The non-radiative recombination inside of, and at the interfaces of the CdTe absorbers in CdTe/MgCdTe DH samples has been significantly reduced due to the use of lattice-matched InSb substrates, and the excellent passivation provided by the MgCdTe barrier layers. The external luminescent quantum efficiency (η_ext) of n-type CdTe/MgCdTe DHs is up to 3.1%, observed from a 1-µm-thick CdTe/MgCdTe DH doped at 1017 cm-3. The 3.1% η_ext corresponds to an internal luminescent quantum efficiency (η_int) of 91%. Such a high η_ext gives an implied Voc, or quasi-Fermi-level splitting, of 1.13 V.

To obtain actual Voc, the quasi-Fermi-level splitting should be extracted to outside the circuit using a hole-selective contact layer. However, CdTe is difficult to be doped p-type, making it challenging to make efficient PN junction CdTe solar cells. With the use of MgCdTe barrier layers, the hole-contact layer can be defective without affecting the voltage. P-type hydrogenated amorphous silicon is an effective hole-selective contact for CdTe solar cells, enabling monocrystalline CdTe/MgCdTe DH solar cells to achieve Voc over 1.1 V, and a maximum active area efficiency of 18.8% (Jsc = 23.3 mA/cm2, Voc = 1.114 V, and FF = 72.3%). The knowledge gained through making the record-efficiency monocrystalline CdTe cell, particularly the n-type doping and the double-heterostructure design, may be transferable to polycrystalline CdTe thin-film cells and improve their competitiveness in the PV industry.
ContributorsZhao, Yuan (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / King, Richard (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2016