Matching Items (3)

Filtering by

Clear all filters

153750-Thumbnail Image.png

Evolution under our feet: Anthony David Bradshaw (1926-2008) and the rise of ecological genetics

Description

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.

Contributors

Agent

Created

Date Created
2015

156224-Thumbnail Image.png

From conflict to common ground: establishing Religious Cultural Competence in Evolution Education (ReCCEE)

Description

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived conflict between religion and evolution. Using pre-post instructional surveys of students in introductory college biology, Study 1 establishes instructional strategies that can be effective for reducing students' perceived conflict between religion and evolution. Through interviews and qualitative analyses, Study 2 documents how instructors teaching evolution at public universities may be resistant towards implementing strategies that can reduce students' perceived conflict, perhaps because of their own lack of religious beliefs and lack of training and awareness about students' conflict with evolution. Interviews with religious students in Study 3 reveals that religious college biology students can perceive their instructors as unfriendly towards religion which can negatively impact these students' perceived conflict between religion and evolution. Study 4 explores how instructors at Christian universities, who share the same Christian backgrounds as their students, do not struggle with implementing strategies that reduce students' perceived conflict between religion and evolution. Cumulatively, these studies reveal a need for a new instructional framework for evolution education that takes into account the religious cultural difference between instructors who are teaching evolution and students who are learning evolution. As such, a new instructional framework is then described, Religious Cultural Competence in Evolution Education (ReCCEE), that can help instructors teach evolution in a way that can reduce students' perceived conflict between religion and evolution, increase student acceptance of evolution, and create more inclusive college biology classrooms for religious students.

Contributors

Agent

Created

Date Created
2018

157760-Thumbnail Image.png

Evolutionary Genetics of CORL Proteins

Description

Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in

Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions are unknown. Conducting transgenic experiments in the adult wings,

and third instar larval brains using mCORL1, mCORL2 and dCORL are used to provide

insight into the function of these proteins. These experiments show mCORL1 has a

different function from mCORL2 and dCORL when expressed in Drosophila. mCORL2

and dCORL have functional similarities that are likely conserved. Six amino acid

substitutions between mCORL1 and mCORL2/dCORL may be the reason for the

functional difference. The evolutionary implications of this research suggest the

conservation of a switch between Dpp/dActivin signaling that predates the divergence of

arthropods and vertebrates.

Contributors

Agent

Created

Date Created
2019