Matching Items (41)

Filtering by

Clear all filters

151122-Thumbnail Image.png

Forces driving thermogenesis and parental care in pythons

Description

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.

Contributors

Agent

Created

Date Created
2012

151901-Thumbnail Image.png

Ambient light environment and the evolution of brightness, chroma, and perceived chromaticity in the warning signals of butterflies

Description

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.

Contributors

Agent

Created

Date Created
2013

The genetics of speciation in the parasitoid wasp, Nasonia

Description

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.

Contributors

Agent

Created

Date Created
2013

151750-Thumbnail Image.png

Spatial and temporal patterns of population genetic diversity in the fynbos plant, Leucadendron salignum, in the Cape Floral Region of South Africa

Description

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.

Contributors

Agent

Created

Date Created
2013

150622-Thumbnail Image.png

The physiology of division of labor in the ant, Pogonomyrmex californicus

Description

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.

Contributors

Agent

Created

Date Created
2012

150283-Thumbnail Image.png

Nagel and Burge on intentionality and physicalism

Description

Given the success of science, weak forms of mind-brain dependence are commonly treated as uncontroversial within contemporary philosophies of mind. More controversial are the different metaphysical claims inferred from this dependence, many ascribing ontological priority to the brain. Consider the

Given the success of science, weak forms of mind-brain dependence are commonly treated as uncontroversial within contemporary philosophies of mind. More controversial are the different metaphysical claims inferred from this dependence, many ascribing ontological priority to the brain. Consider the following three propositions: (i) neurological events are essentially identified by their role in material systems, laws, and causes that are constitutively non-rational; (ii) at least some mental events are essentially identified in virtue of their role in the use of reason; (iii) all mental events are realized by, identical to, or composed out of, neurological events. (i) is uncontroversial. However, (iii) is strictly materialistic. (i), (ii) and (iii) taken together appear incoherent. A fruitful task for philosophy is to resolve this apparent incoherence. In his 1997 book The Last Word Thomas Nagel offers an explication of reason that conceptually transcends the nature of material substrate. In his 2010 article "Modest Dualism" Tyler Burge offers reasons to think of propositional thought as irreducible to the concepts of the material sciences. Both focus on rationality as a unique form of intentionality. Both philosophers also reject materialism (iii). On their accounts it's reasonable to take 'rational intentionality' as exhibiting a logical priority of the mind with respect to the brain in inquiries into the nature of mind. Granting this, the diminished conception of mind presupposed by prevailing contemporary theories is seen to be the result of a more general failure to recognize the logical priority and intricate nature of rationality. The robust views of rationality expressed by Nagel and Burge constitute grounds for argument against even the weakest form of materialism. I develop such an argument in this thesis, showing that the propositional attitudes exhibited in thought and speech preclude all materialistic notions of mind. Furthermore, I take the nature of propositional attitudes to suggest a perspective for exploring the fundamental nature of mind, one that focuses not on composition but on rational powers.

Contributors

Agent

Created

Date Created
2011

150416-Thumbnail Image.png

Morphological integration and the anthropoid dentition

Description

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.

Contributors

Agent

Created

Date Created
2011

150670-Thumbnail Image.png

Climate as a moderator of the effect of disease threat on interpersonal behavior

Description

Infectious diseases have been a major threat to survival throughout human history. Humans have developed a behavioral immune system to prevent infection by causing individuals to avoid people, food, and objects that could be contaminated. This current project investigates how

Infectious diseases have been a major threat to survival throughout human history. Humans have developed a behavioral immune system to prevent infection by causing individuals to avoid people, food, and objects that could be contaminated. This current project investigates how ambient temperature affects the activation of this system. Because temperature is positively correlated with the prevalence of many deadly diseases, I predict that temperature moderates the behavioral immune system, such that a disease prime will have a stronger effect in a hot environment compared to a neutral environment and one's avoidant behaviors will be more extreme. Participants were placed in a hot room (M = 85F) or a neutral room (M = 77F) and shown a disease prime slide show or a neutral slide show. Disgust sensitivity and perceived vulnerability surveys were used to measure an increased perceived risk to disease. A taste test between a disgusting food item (gummy bugs) and a neutral food item (gummy animals) measured food avoidance. There was no significant avoidance of the gummy and no significant difference in ratings of disgust sensitivity or perceived vulnerability as a function of temperature conditions. There were no significant interactions between temperature and disease. The conclusion is that this study did not provide evidence that temperature moderates the effect of disease cues on behavior.

Contributors

Agent

Created

Date Created
2012

150702-Thumbnail Image.png

Comparative and experimental investigations of cranial robusticity in mid-Pleistocene hominins

Description

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT)

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.

Contributors

Agent

Created

Date Created
2012

150727-Thumbnail Image.png

Development of feeding in ring-tailed lemurs

Description

Fundamental hypotheses about the life history, complex cognition and social dynamics of humans are rooted in feeding ecology - particularly in the experiences of young animals as they grow. However, the few existing primate developmental data are limited to only

Fundamental hypotheses about the life history, complex cognition and social dynamics of humans are rooted in feeding ecology - particularly in the experiences of young animals as they grow. However, the few existing primate developmental data are limited to only a handful of species of monkeys and apes. Without comparative data from more basal primates, such as lemurs, we are limited in the scope of our understanding of how feeding has shaped the evolution of these extraordinary aspects of primate biology. I present a developmental view of feeding ecology in the ring-tailed lemur (Lemur catta) using a mixed longitudinal sample (infant through adult) collected at the Beza Mahafaly Special Reserve in southwestern Madagascar from May 2009 to March 2010. I document the development of feeding, including weaning, the transition to solid food, and how foods are included in infant diets. Early in juvenility ring-tailed lemurs efficiently process most foods, but that hard ripe fruits and insects require more time to master. Infants and juveniles do not use many of the social learning behaviors that are common in monkeys and apes, and instead likely rely both on their own trial and error and simple local enhancement to learn appropriate foods. Juvenile ring-tailed lemurs are competent and efficient foragers, and that mitigating ecological risks may not best predict the lemur juvenile period, and that increases in social complexity and brain size may be at the root of primate juvenility. Finally, from juvenility through adulthood, females have more diverse diets than males. The early emergence of sex differences in dietary diversity in juvenility that are maintained throughout adulthood indicate that, in addition to reproductive costs incurred by females, niche partitioning is an important aspect of sex differential feeding ecology, and that ontogenetic studies of feeding are particularly valuable to understanding how selection shapes adult, species-typical diets. Overall, lemur juvenility is a time to play, build social relationships, learn about food, and where the kernels of sex-typical feeding develop. This study of the ontogeny of feeding ecology contributes an important phylogenetic perspective on the relationship between juvenility and the emergent foraging behaviors of developing animals

Contributors

Agent

Created

Date Created
2012