Matching Items (6)
Filtering by

Clear all filters

151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
153789-Thumbnail Image.png
Description
This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules

This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules.

Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives.

The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.
ContributorsRajasekar, Vidyashree (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
154876-Thumbnail Image.png
Description
The deposition of airborne dust, especially in desert conditions, is very problematic as it leads to significant loss of power of photovoltaic (PV) modules on a daily basis during the dry period. As such, PV testing laboratories around the world have been trying to set up soil deposition stations to

The deposition of airborne dust, especially in desert conditions, is very problematic as it leads to significant loss of power of photovoltaic (PV) modules on a daily basis during the dry period. As such, PV testing laboratories around the world have been trying to set up soil deposition stations to artificially deposit soil layers and to simulate outdoor soiling conditions in an accelerated manner. This thesis is a part of a twin thesis. The first thesis, authored by Shanmukha Mantha, is associated with the designing of an artificial soiling station. The second thesis (this thesis), authored by Darshan Choudhary, is associated with the characterization of the deposited soil layers. The soil layers deposited on glass coupons and one-cell laminates are characterized and presented in this thesis. This thesis focuses on the characterizations of the soil layers obtained in several soiling cycles using various techniques including current-voltage (I-V), quantum efficiency (QE), compositional analysis and optical profilometry. The I-V characterization was carried out to determine the impact of soil layer on current and other performance parameters of PV devices. The QE characterization was carried out to determine the impact of wavelength dependent influence of soil type and thickness on the QE curves. The soil type was determined using the compositional analysis. The compositional data of the soil is critical to determine the adhesion properties of the soil layers on the surface of PV modules. The optical profilometry was obtained to determine the particle size and distribution. The soil layers deposited using two different deposition techniques were characterized. The two deposition techniques are designated as “dew” technique and “humidity” technique. For the same deposition time, the humidity method was determined to deposit the soil layer at lower rates as compared to the dew method. Two types of deposited soil layers were characterized. The first type layer was deposited using a reference soil called Arizona (AZ) dust. The second type layer was deposited using the soil which was collected from the surface of the modules installed outdoor in Arizona. The density of the layers deposited using the surface collected soil was determined to be lower than AZ dust based layers for the same number of deposition cycles.
ContributorsChoudhary, Darshan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley Barney (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
155103-Thumbnail Image.png
Description
The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, humidity, and UV, the stress parameters) and different empirical rate models such as Arrhenius, Peck, Klinger and modified Peck models. For the indoor accelerated data, three sets of mini-modules with the same construction/manufacturer as that of the outdoor fielded modules were subjected indoor accelerated weathering stress and the test data were analyzed. The indoor accelerated test was carried out in a weathering chamber at the chamber temperature of 20°C, chamber relative humidity of 65%, and irradiance of 1 W/m2 at 340nm using a xenon arc lamp. Typically, to obtain activation energy, the test samples are stressed at two (or more) temperatures in two (or more) chambers. However, in this work, it has been attempted to do the acceleration testing of eight mini-modules at multiple temperatures using a single chamber. Multiple temperatures in a single chamber were obtained using thermal insulators on the back of the mini-modules. Depending on the thickness of the thermal insulators with constant solar gain from the xenon lamp, different temperatures on the test samples were achieved using a single weathering chamber. The Isc loss and temperature of the mini-modules were continuously monitored using a data logger. Also, the mini-modules were taken out every two weeks and various characterization tests such as IV, QE, UV fluorescence and reflectance were carried out. Activation energy from the indoor accelerated tests was calculated using the short circuit current degradation rate and operating temperatures of the mini-modules. The activation energy for the encapsulant browning obtained from the outdoor field data and the indoor accelerated data are compared and analyzed in this work.
ContributorsVeerendra Kumar, Deepak Jain (Author) / Tamizhmani, Govindasamy (Committee member) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
153712-Thumbnail Image.png
Description
This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules

This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules of five different technologies with air/glass interface. However, the modules that are installed in the field would invariably develop a soil layer with varying thickness depending on the site condition, rainfall and tilt angle. The soiled module will have the air/soil/glass interface rather than air/glass interface. This study investigates the AOI variations on soiled modules of five different PV technologies. It is demonstrated that AOI effect is inversely proportional to the soil density. In other words, the power or current loss between clean and soiled modules would be much higher at a higher AOI than at a lower AOI leading to excessive energy production loss of soiled modules on cloudy days, early morning hours and late afternoon hours. Similarly, the spectral influence of soil on the performance of the module was investigated through reflectance and transmittance measurements. It was observed that the reflectance and transmittances losses vary linearly with soil density variation and the 600-700 nm band was identified as an ideal band for soil density measurements.

Part 2 of this thesis performs statistical risk analysis for a power plant through FMECA (Failure Mode, Effect, and Criticality Analysis) based on non-destructive field techniques and count data of the failure modes. Risk Priority Number is used for the grading guideline for criticality analysis. The analysis was done on a 19-year-old power plant in cold-dry climate to identify the most dominant failure and degradation modes. In addition, a comparison study was done on the current power plant (framed) along with another 18-year-old (frameless) from the same climate zone to understand the failure modes for cold-dry climatic condition.
ContributorsBoppana, Sravanthi (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015