Matching Items (2)
Filtering by

Clear all filters

154442-Thumbnail Image.png
Description
A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This study aimed to characterize the reciprocal relationship between a teacher’s

A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This study aimed to characterize the reciprocal relationship between a teacher’s mathematical knowledge for teaching and pedagogical goals.

Two exploratory studies produced a framework to characterize a teacher’s mathematical goals for student learning. A case study was then conducted to investigate the effect of a professional developmental intervention designed to impact a teacher’s mathematical goals. The guiding research questions for this study were: (a) what is the effect of a professional development intervention, designed to perturb a teacher’s pedagogical goals for student learning to be more attentive to students’ thinking and learning, on a teacher’s views of teaching, stated goals for student learning, and overarching goals for students’ success in mathematics, and (b) what role does a teacher's mathematical teaching orientation and mathematical knowledge for teaching have on a teacher’s stated and overarching goals for student learning?

Analysis of the data from this investigation revealed that a conceptual curriculum supported the advancement of a teacher’s thinking regarding the key ideas of mathematics of lessons, but without time to reflect and plan, the teacher made limited connections between the key mathematical ideas within and across lessons. The teacher’s overarching goals for supporting student learning and views of teaching mathematics also had a significant influence on her curricular choices and pedagogical moves when teaching. The findings further revealed that a teacher’s limited meanings for proportionality contributed to the teacher struggling during teaching to support students’ learning of concepts that relied on understanding proportionality. After experiencing this struggle the teacher reverted back to using skill-based lessons she had used before.

The findings suggest a need for further research on the impact of professional development of teachers, both in building meanings of key mathematical ideas of a teacher’s lessons, and in professional support and time for teachers to build stronger mathematical meanings, reflect on student thinking and learning, and reconsider one’s instructional goals.
ContributorsMarfai, Frank Stephen (Author) / Carlson, Marilyn P. (Thesis advisor) / Ström, April D. (Committee member) / Thompson, Patrick W. (Committee member) / Middleton, James A. (Committee member) / Zandieh, Michelle J. (Committee member) / Arizona State University (Publisher)
Created2016
154821-Thumbnail Image.png
Description
The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT) -

The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT) - Mathematics assessment and nine of them took the Cognitively Activating Instruction in Mathematics (COACTIV) assessment. Participants answered questions that demonstrated their understanding of students' challenges and misconceptions, ability to recognize and utilize multiple representations and methods of presenting content, and understanding of tasks and materials that they may be using for instruction. Additionally, participants indicated their college major, institution attended, years of experience, and participation in various other learning opportunities. This data was analyzed to look for changes in knowledge, first among those still in college, then among those already in the field, and finally as a whole group to look for a pattern of growth from pre-service through working in the classroom. I compared these results to the theories of learning espoused by the creators of these two tests to see which model the data supports. The results indicate that growth in PCK occurs among college students during their teacher preparation program, with much less change once a teacher enters the field. Growth was not linear, but best modeled by an s-curve, showing slow initial changes, substantial development during the 2nd and 3rd year of college, and then a leveling off during the last year of college and the first few years working in a classroom. Among current teachers' the only group that demonstrated any measurable growth were teachers who majored in a non-education field. Other factors like internships and professional development did not show a meaningful correlation with PCK. Even though some of these models were statistically significant, they did not account for a substantial amount of the variation among individuals, indicating that personal factors and not programmatic ones may be the primary determinant of a teachers' knowledge.
ContributorsJohnson, Jeffrey (Author) / Middleton, James A. (Thesis advisor) / Marsh, Josephine P (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2016