Matching Items (8)

150423-Thumbnail Image.png

Dynamic waveform design for track-before-detect algorithms in radar

Description

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted mean-squared error (MSE). As a result, the radar parameters are adaptively and optimally selected for superior performance. Based on previous work, this thesis highlights the applicability of the predicted covariance matrix to the lower SNR waveform-agile tracking problem. The adaptive waveform selection algorithm's MSE performance was compared against fixed waveforms using Monte Carlo simulations. It was found that the adaptive approach performed at least as well as the best fixed waveform when focusing on estimating only position or only velocity. When these estimates were weighted by different amounts, then the adaptive performance exceeded all fixed waveforms. This improvement in performance demonstrates the utility of the predicted covariance in waveform design, at low SNR conditions that are poorly handled with more traditional tracking algorithms.

Contributors

Agent

Created

Date Created
  • 2011

153310-Thumbnail Image.png

Multiple detection and tracking in complex time-varying environments

Description

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting information from multiple measurements due to multipath returns in the urban terrain. The path likelihood probability is calculated by considering associations between measurements and multipath returns, and an adaptive clustering algorithm is used to estimate the number of target and their corresponding parameters. The performance of the proposed algorithm is demonstrated for different multiple target scenarios and evaluated using the optimal subpattern assignment metric. The underwater environment provides a very challenging communication channel due to its highly time-varying nature, resulting in large distortions due to multipath and Doppler-scaling, and frequency-dependent path loss. A model-based wideband UWA channel estimation algorithm is first proposed to estimate the channel support and the wideband spreading function coefficients. A nonlinear frequency modulated signaling scheme is proposed that is matched to the wideband characteristics of the underwater environment. Constraints on the signal parameters are derived to optimally reduce multiple access interference and the UWA channel effects. The signaling scheme is compared to a code division multiple access (CDMA) scheme to demonstrate its improved bit error rate performance. The overall multi-user communication system performance is finally analyzed by first estimating the UWA channel and then designing the signaling scheme for multiple communications users.

Contributors

Agent

Created

Date Created
  • 2014

153279-Thumbnail Image.png

Continuous spatio temporal tracking of mobile targets

Description

There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile

There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile targets using the fewest number of mobile trackers, when the trajectories of all the targets are known in advance. Almost all the existing research discretized time (and/or space), or assume infinite tracker velocity. In this thesis, I consider the problem of covering (tracking) target nodes using a network of Unmanned Airborne Vehicles (UAV's) for the entire period of observation by adding the constraint of fixed velocity on the trackers and observing the targets in continuous time and space. I also show that the problem is NP-complete and provide algorithms for handling cases when targets are static and dynamic.

Contributors

Agent

Created

Date Created
  • 2014

155207-Thumbnail Image.png

Target discrimination against clutter based on unsupervised clustering and sequential Monte Carlo tracking

Description

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering approaches have been considered to solve this problem. Such methods, however, can be computationally intensive for real time radar processing. This work proposes a new approach that is based on the unsupervised clustering of target and clutter detections before target tracking using particle filtering. In particular, Gaussian mixture modeling is first used to separate detections into two Gaussian distinct mixtures. Using eigenvector analysis, the eccentricity of the covariance matrices of the Gaussian mixtures are computed and compared to threshold values that are obtained a priori. The thresholding allows only target detections to be used for target tracking. Simulations demonstrate the performance of the new algorithm and compare it with using k-means for clustering instead of Gaussian mixture modeling.

Contributors

Agent

Created

Date Created
  • 2016

150175-Thumbnail Image.png

Urban terrain multiple target tracking using the probability hypothesis density particle filter

Description

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban terrain environments is traditionally implemented using sequential Monte Carlo filtering algorithms and data association techniques. However, data association techniques can be computationally intensive and require very strict conditions for efficient performance. This thesis investigates the probability hypothesis density (PHD) method for tracking multiple targets in urban environments. The PHD is based on the theory of random finite sets and it is implemented using the particle filter. Unlike data association methods, it can be used to estimate the number of targets as well as their corresponding tracks. A modified maximum-likelihood version of the PHD (MPHD) is proposed to automatically and adaptively estimate the measurement types available at each time step. Specifically, the MPHD allows measurement-to-nonlinearity associations such that the best matched measurement can be used at each time step, resulting in improved radar coverage and scene visibility. Numerical simulations demonstrate the effectiveness of the MPHD in improving tracking performance, both for tracking multiple targets and targets in clutter.

Contributors

Agent

Created

Date Created
  • 2011

150930-Thumbnail Image.png

Integrated waveform-agile multi-modal track-before-detect algorithms for tracking low observable targets

Description

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However, there are many challenges to overcome, including tracking low signal-to-noise ratio (SNR) targets, waveform configurations that can optimize tracking performance and statistically dependent measurements. Address some of these challenges, a particle filter (PF) based recursive waveformagile track-before-detect (TBD) algorithm is developed to avoid information loss caused by conventional detection under low SNR environments. Furthermore, a waveform-agile selection technique is integrated into the PF-TBD to allow for adaptive waveform configurations. The embedded exponential family (EEF) approach is used to approximate distributions of parameters of dependent RF and EO measurements and to further improve target detection rate and tracking performance. The performance of the integrated algorithm is evaluated using real data from three experimental scenarios.

Contributors

Agent

Created

Date Created
  • 2012

153630-Thumbnail Image.png

Target tracking in environments of rapidly changing clutter

Description

Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more

Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more difficult for tracking algorithms to adapt. A novel approach to target tracking in such dynamic clutter environments is proposed using a particle filter (PF) integrated with Interacting Multiple Models (IMMs) to compensate and adapt to the transition between different clutter densities. This model was implemented for the case of a monostatic sensor tracking a single target moving with constant velocity along a two-dimensional trajectory, which crossed between regions of drastically different clutter densities. Multiple combinations of clutter density transitions were considered, using up to three different clutter densities. It was shown that the integrated IMM PF algorithm outperforms traditional approaches such as the PF in terms of tracking results and performance. The minimal additional computational expense of including the IMM more than warrants the benefits of having it supplement and amplify the advantages of the PF.

Contributors

Agent

Created

Date Created
  • 2015

150692-Thumbnail Image.png

Temporal coding of cortical neural signals and camera motion estimation in target tracking

Description

This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion

This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information. A new algorithm is proposed in this dissertation to this very issue. Optimization and parameter tuning of a robust camera motion estimation as well as implementation details are discussed for a real-time application using an ordinary general-purpose computer. Performance evaluations on real-world unmanned air vehicle (UAV) videos demonstrate the robustness of the proposed algorithms. The second half of the dissertation addresses neural signal analysis and modeling. Neural waveforms were recorded from rats' motor cortical areas while rats performed a learning control task. Prior to analyzing and modeling based on the recorded neural signal, neural action potentials are processed to detect neural action potentials which are considered the basic computation unit in the brain. Most algorithms rely on simple thresholding, which can be subjective. This dissertation proposes a new detection algorithm, which is an automatic procedure based on signal-to-noise ratio (SNR) from the neural waveforms. For spike sorting, this dissertation proposes a classification algorithm based on spike features in the frequency domain and adaptive clustering method such as the self-organizing map (SOM). Another major contribution of the dissertation is the study of functional interconnectivity of neurons in an ensemble. These functional correlations among neurons reveal spatial and temporal statistical dependencies, which consequently contributes to the understanding of a neuronal substrate of meaningful behaviors. This dissertation proposes a new generalized yet simple method to study adaptation of neural ensemble activities of a rat's motor cortical areas during its cognitive learning process. Results reveal interesting temporal firing patterns underlying the behavioral learning process.

Contributors

Agent

Created

Date Created
  • 2012