Matching Items (9)

153734-Thumbnail Image.png

Recombinant electron donors and acceptors to and from reaction center particles, and light dependent menaquinone reduction in isolated membranes of Heliobacterium modesticaldum

Description

The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants,

The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and from the RC are not totally established. Elucidating these structures and mechanisms are paramount to determining where the HbRC is in the grand scheme of RC evolution. In this work, the function and properties of the solubilized cyt c553, PetJ, were investigated, as well as the role HbRC localized menaquinone plays in light-induced electron transfer, and the interaction of the Nif-specific ferredoxin FdxB with reaction center particles devoid of bound FA/FB proteins. In chapter 2, I successfully express and purify a soluble version of PetJ that functions as a temperature dependent electron donor to P800+. Recombinant PetJ retains the spectroscopic characteristics of membrane-bound PetJ. The kinetics were characteristic of a bimolecular reaction with a second order rate of 1.53 x 104 M-1s-1 at room temperature and a calculated activation energy of 91 kJ/mol. In chapter 4, I use reverse phase high-performance liquid chromatography (HPLC) to detect the light-induced generation of Menaquinol-9 (MQH2) in isolated heliobacterial membranes. This process is dependent on laser power, pH, temperature, and can be modified by the presence of the artificial electron acceptor benzyl viologen (BV) and the inhibitors azoxystrobin and terbutryn. The addition of the bc complex inhibitor azoxystrobin decreases the ratio of MQ to MQH2. This indicates competition between the HbRC and the bc complex, and hints toward a truncated cyclic electron flow pathway. In chapter 5, the Nif-Specific ferredoxin FdxB was recombinantly expressed and shown to oxidize the terminal cofactor in the HbRC, FX-, in a concentration-dependent manner. This work indicates the HbRC may be able to reduce a wide variety of electron acceptors that may be involved in specific metabolic processes.

Contributors

Agent

Created

Date Created
  • 2015

151380-Thumbnail Image.png

How does nutrient limitation affect expression of assimilatory genes within a photosynthetic microbial mat community in Yellowstone National Park?

Description

Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope

Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and iron (yusV) were measured under various nutrient enrichment experiments. While results for nrgA and phoA were inconclusive, results for yusV showed an increase in expression with the addition of N and Fe. This is the first data that shows the impact of nutrients on siderophore uptake regulation in hot spring microbes.

Contributors

Agent

Created

Date Created
  • 2012

153298-Thumbnail Image.png

Impact of viral infectivity on phototrophic microbes for biofuel applications

Description

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.

Contributors

Agent

Created

Date Created
  • 2014

150155-Thumbnail Image.png

Genome sequencing and analysis of the psychrophilic anoxygenic phototrophic bacterium Rhodoferax antarcticus sp. ANT.BR

Description

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no obvious intracytoplasmic membranes in cells grown phototrophically, even under low light intensity. Analysis of the finished genome sequence reveals a single chromosome (3,809,266 bp) and a large plasmid (198,615 bp) that together harbor 4,262 putative genes. The genome contains two types of Rubiscos, Form IAq and Form II, which are known to exhibit quite different kinetic properties in other bacteria. The presence of multiple Rubisco forms could give R. antarcticus high metabolic flexibility in diverse environments. Annotation of the complete genome sequence along with previous experimental results predict the presence of structural genes for three types of light-harvesting (LH) complexes, LH I (B875), LH II (B800/850), and LH III (B800/820). There is evidence that expression of genes for the LH II complex might be inhibited when R. antarcticus is under low temperature and/or low light intensity. These interesting condition-dependent light-harvesting apparatuses and the control of their expression are very valuable for the further understanding of photosynthesis in cold environments. Finally, R. antarcticus exhibits a highly motile lifestyle. The genome content and organization of all putative polar flagella genes are characterized and discussed.

Contributors

Agent

Created

Date Created
  • 2011

154009-Thumbnail Image.png

Photoautotrophic production of biomass, laurate, and soluble organics by Synechocystis sp. PCC 6803

Description

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly.

This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s.

Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI.

How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently.

Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (µmax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 µE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its µmax with a modest Ci concentration (≥1.0 mM).

Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall biomass productivity.

This dissertation systematically evaluates and synthesizes fundamental growth factors of cyanobacteria: light, inorganic carbon (Ci), and pH. LI remains the most critical growth condition to promote biomass productivity and desired forms of biomass, while Ci and pH now can be managed to support optimal productivity.

Contributors

Agent

Created

Date Created
  • 2015

153560-Thumbnail Image.png

Recycling water and nutrients when producing the cyanobacterium Synechocystis sp. PCC 6803

Description

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance.

During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating system. Recycling permeate reduced the amount of fresh medium delivered to the PBR by 45%. Biomass production rates as high as 400 mg-DW/L/d (9.2 g-DW/m2/d) were sustained under constant lighting over a 12-day period.

In the next phase, I operated the system as a sequencing batch reactor (SBR), which improved control over nutrient delivery and increased the concentration factor of filtered biomass (from 1.8 to 6.8). I developed unique system parameters to compute the amount of recycled permeate in the reactor and the actual hydraulic retention time during SBR operation. The amount of medium delivered to the system was reduced by up to 80%, and growth rates were consistent at variable amounts of repeatedly recycled permeate. The light-based model accurately predicted growth when biofilm was not present. Coupled with mass ratios for PCC 6803, these predictions facilitated efficient delivery of nitrogen and phosphorus. Daily biomass production rates and specific growth rates equal to 360 mg-DW/L/d (8.3 g/m2/d) and 1.0 d-1, respectively, were consistently achieved at a relatively low incident LI (180 µE/m2/s). Higher productivities (up to 550 mg-DW/L/d) occurred under increased LI (725 µE/m2/s), although the onset of biofilm impeded modeled performance.

Permeate did not cause any gradual growth inhibition. Repeated results showed cultures rapidly entered a stressed state, which was followed by widespread cell lysis. This phenomenon occurred independently of permeate recycling and was not caused by nutrient starvation. It may best be explained by negative allelopathic effects or viral infection as a result of mixed culture conditions.

Contributors

Agent

Created

Date Created
  • 2015

151868-Thumbnail Image.png

Microbial electrochemical cells for selective enrichment and characterization of photosynthetic and haloalkaliphilic anode-respiring bacteria

Description

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation that responded negatively to light. Analysis of phototrophically enriched communities suggested essential roles for green sulfur bacteria and halophilic ARB in electricity generation. Reconstruction of light-responsive current generation could be successfully achieved using cocultures of anode-respiring Geobacter and phototrophic Chlorobium isolated from the MXC enrichments. Experiments lacking exogenously supplied organic electron donors indicated that Geobacter could produce a measurable current from stored photosynthate in the dark. Community analysis of phototrophic enrichments also identified members of the novel genus Geoalkalibacter as potential ARB. Electrochemical characterization of two haloalkaliphilic, non-phototrophic Geoalkalibacter spp. showed that these bacteria were in fact capable of producing high current densities (4-8 A/m2) and using higher organic substrates under saline or alkaline conditions. The success of these selective enrichment approaches and community analyses in identifying and understanding novel ARB capabilities invites further use of MXCs as robust platforms for fundamental microbiological investigations.

Contributors

Agent

Created

Date Created
  • 2013

157337-Thumbnail Image.png

Characterization of multi-nuclear manganese-binding bacterial reaction centers from Rhodobacter sphaeroides

Description

In my thesis, I characterize multi-nuclear manganese cofactors in modified reaction

centers from the bacterium Rhodobacter sphaeroides. I characterized interactions

between a variety of secondary electron donors and modified reaction

In my thesis, I characterize multi-nuclear manganese cofactors in modified reaction

centers from the bacterium Rhodobacter sphaeroides. I characterized interactions

between a variety of secondary electron donors and modified reaction centers. In Chapter

1, I provide the research aims, background, and a summary of the chapters in my thesis.

In Chapter 2 and Chapter 3, I present my work with artificial four-helix bundles as

secondary electron donors to modified bacterial reaction centers. In Chapter 2, I

characterize the binding and energetics of the P1 Mn-protein, as a secondary electron

donor to modified reaction centers. In Chapter 3, I present the activity of a suite of four

helix bundles behaving as secondary electron donors to modified reaction centers. In

Chapter 4, I characterize a suite of modified reaction centers designed to bind and oxidize

manganese. I present work that characterizes bound manganese oxides as secondary

electron donors to the oxidized bacteriochlorophyll dimer in modified reaction centers. In

Chapter 5, I present my conclusions with a short description of future work in

characterizing multiple electron transfers from a multi-nuclear manganese cofactor in

modified reaction centers. To conclude, my thesis presents a characterization of a variety

of secondary electron donors to modified reaction centers that establish the feasibility to

characterize multiple turnovers from a multi-nuclear manganese cofactor.

Contributors

Agent

Created

Date Created
  • 2019

153584-Thumbnail Image.png

Characterization of structure and function of microbial communities in Synechocystis sp. PCC6803 photobioreactors

Description

Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods

Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional fuels, but must be produced in great quantities in order to meet the demands of growing populations. Cyanobacteria are prokaryotic photosynthetic microorganisms that can produce biomass on large scales using only sunlight, carbon dioxide, water, and small amounts of nutrients. Thus, Cyanobacteria are a viable option for sustainable production of biofuel feedstock material. Photobioreactors (PBRs) offer a high degree of control over the temperature, aeration, and mixing of cyanobacterial cultures, but cannot be kept sterile due to the scales necessary to meet domestic and global energy demands, meaning that heterotrophic bacteria can grow in PBRs by oxidizing the organic material produced and excreted by the Cyanobacteria. These heterotrophic bacteria can positively or negatively impact the performance of the PBR through their interactions with the Cyanobacteria. This work explores the microbial ecology in PBR cultures of the model cyanobacterium Synechocystis sp. PCC6803 (Synechocystis) using microbiological, molecular, chemical, and engineering techniques. I first show that diverse phylotypes of heterotrophic bacteria can associate with Synechocystis-based PBRs and that excluding them may be impossible under typical PBR operating conditions. Then, I demonstrate that high-throughput sequencing can reliably elucidate the structure of PBR microbial communities without the need for pretreatment to remove Synechocystis 16S rRNA genes, despite the high degree of polyploidy found in Synechocystis. Next, I establish that the structure of PBR microbial communities is strongly influenced by the microbial community of the inoculum culture. Finally, I show that maintaining available phosphorus in the culture medium promotes the production and enrichment of Synechocystis biomass in PBRs by reducing the amount of soluble substrates available to heterotrophic bacteria. This work presents the first analysis of the structure and function of microbial communities associated with Synechocystis-based PBRs.

Contributors

Agent

Created

Date Created
  • 2015