Matching Items (23)

152703-Thumbnail Image.png

Peak travel in a megacity: exploring the role of infrastructure saturation on the suppression of automobile use

Description

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much debate and there has been a mobilization of research, largely focused at the national scale, to study the explanatory drivers but research focused at the metropolitan scale, where transportation policy and planning are frequently decided, is relatively thin. Additionally, a majority of this research has focused on changes within the activity system without considering the impact transportation infrastructure has on overall travel demand. Using Los Angeles County California, we investigate Peak Car and whether the saturation of automobile infrastructure, in addition to societal and economic factors, may be a suppressing factor. After peaking in 2002, vehicle travel in Los Angeles County in 2010 was estimated at 78 billion and was 20.3 billion shy of projections made in 2002. The extent to which infrastructure saturation may contribute to Peak Car is evaluated by analyzing social and economic factors that may have impacted personal automobile usage over the last decade. This includes changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics , travel time and income levels. Summation of all assessed factors reveals there is at least some portion of the 20 billion VMT that is unexplained in all but the worst case scenario. We hypothesize that the unexplained remaining VMT may be explained by infrastructure supply constraints that result in suppression of travel. This finding has impacts on how we see the role of hard infrastructure systems in urban growth and we explore these impacts in the research.

Contributors

Agent

Created

Date Created
  • 2014

150151-Thumbnail Image.png

Sustainability of intercity transportation infrastructure: assessing the energy consumption and greenhouse gas emissions of high-speed rail in the U.S

Description

In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of

In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions and fossil energy consumption. This study investigates the feasibility of high-speed rail development as a long-term greenhouse gas emission mitigation strategy while considering major uncertainties in the technological and operational characteristics of intercity travel. First, I develop a general model for evaluating the emissions impact of intercity travel modes. This model incorporates aspects of life-cycle assessment and technological forecasting. The model is then used to compare future scenarios of energy and greenhouse gas emissions associated with the development of high-speed rail and other intercity travel technologies. Three specific rail corridors are evaluated and policy guidelines are developed regarding the emissions impacts of these investments. The results suggest prioritizing high-speed rail investments on short, dense corridors with fewer stops. Likewise, less emphasis should be placed on larger investments that require long construction times due to risks associated with payback of embedded emissions as competing technology improves.

Contributors

Agent

Created

Date Created
  • 2011

153482-Thumbnail Image.png

Problems of transportation planning during winter storms in Portland, Oregon, and Seattle, Washington: a comparative study

Description

Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but

Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but public transportation, commercial transportation, and emergency vehicles are affected as well. Portland, Oregon, and Seattle, Washington, both suffer from mild, but sometimes extreme, storms that affect the entire city. Taking a closer look at the number of crashes reported by the City of Portland and the City of Seattle, it is seen that there is an increase in percent of crashes with reported road conditions of snow and ice. Both cities appear to have nearly the same reported crash percentages. Recommendations in combating the issue of increased accidents and the disruption of the city itself include looking into communication between the climate research institution and city planners that could help with planning for better mitigation during storms, a street or gas tax, although an impact study is important to keep in mind to make sure no part of the population is at risk; and engineering revolutions such as Solar Roadways that could benefit all cities.

Contributors

Agent

Created

Date Created
  • 2015

150888-Thumbnail Image.png

Measuring the success of a transportation project: Loop 202 (Red Mountain Freeway) case study

Description

Measuring the success of a transportation project as it is envisioned in the Regional Transportation Plan (RTP) and is detailed in an Environmental Impact Statement (EIS) is not part of

Measuring the success of a transportation project as it is envisioned in the Regional Transportation Plan (RTP) and is detailed in an Environmental Impact Statement (EIS) is not part of any current planning process, for a post construction analysis may have political consequences for the project participants, would incur additional costs, and may be difficult to define in terms of scope. With local, state and federal budgets shrinking, funding sources are demanding that the performance of a project be evaluated and project stakeholders be held accountable. The Transportation Research Board (TRB) developed a framework that allows transportation agencies to customize their reporting so that a project's performance can be measured. In the case of the Red Mountain Freeway, the selected performance measure allows for comparing the population forecasts, the traffic volumes, and the project costs defined in the final EIS to actual population growth, actual average annual daily traffic (ADT), and actual project costs obtained from census data, the City of Mesa, and contractor bids, respectively. The results show that population projections for both Maricopa County and the City of Mesa are within less than half a percent of the actual annual population growth. The traffic analysis proved more difficult due to inconsistencies within the EIS documents, variations in the local arterials used to produce traffic volume, and in the projection time-spans. The comparison for the total increase in traffic volume generated a difference of 11.34 percent and 89.30 percent. An adjusted traffic volume equal to all local arterials and US 60 resulted in a difference of 40 percent between the projected and actual ADT values. As for the project cost comparison, not only were the costs within the individual documents inconsistent, but they were underestimated by as much as 75 percent. Evaluating the goals as described in an EIS document using the performance measure guidelines provided by the TRB may provide the tool that can help promote conflict resolution for political issues that arise, streamline the planning process, and measure the performance of the transportation system, so that lessons learned can be applied to future projects.

Contributors

Agent

Created

Date Created
  • 2012

153001-Thumbnail Image.png

Analysis of freeway bottlenecks

Description

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding of factors for variations in bottleneck discharge rates. Specifically this research seeks to (i) develop a methodology comparable to the rigorous methods to identify bottlenecks and measure capacity drop and its temporal (day to day) variations in a region, (ii) understand the variations in discharge rate of a freeway weaving bottleneck with a HOV lane and (iii) understand the relationship between lane flow distribution and discharge rate on a weaving bottleneck resulted from a lane drop and a busy off-ramp. In this research, a methodology has been developed to de-noise raw data using Discrete Wavelet Transforms (DWT). The de-noised data is then used to precisely identify bottleneck activation and deactivation times, and measure pre-congestion and congestion flows using Continuous Wavelet Transforms (CWT). To this end a methodology which could be used efficiently to identify and analyze freeway bottlenecks in a region in a consistent, reproducible manner was developed. Using this methodology, 23 bottlenecks have been identified in the Phoenix metropolitan region, some of which result in long queues and large delays during rush-hour periods. A study of variations in discharge rate of a freeway weaving bottleneck with a HOV lane showed that the bottleneck discharge rate diminished by 3-25% upon queue formations, however, the discharge rate recovered shortly thereafter upon high-occupancy-vehicle (HOV) lane activation and HOV lane flow distribution (LFD) has a significant effect on the bottleneck discharge rate: the higher the HOV LFD, the lower the bottleneck discharge rate. The effect of lane flow distribution and its relationship with bottleneck discharge rate on a weaving bottleneck formed by a lane drop and a busy off-ramp was studied. The results showed that the bottleneck discharge rate and lane flow distribution are linearly related and higher utilization of the median lane results in higher bottleneck discharge rate.

Contributors

Agent

Created

Date Created
  • 2014

153985-Thumbnail Image.png

Empirical analysis and modeling of freeway merge ratios and lane flow distribution

Description

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in the evolution and stability of congested traffic. At merges, drivers from conflicting traffic branches take turns to merge into a single stream at a rate referred to as the “merge ratio”. In this research, data from several freeway merges was used to evaluate existing macroscopic merge models and theoretical principles of merging behavior. Findings suggest that current merge ratio estimation methods can be insufficient to represent site-specific merge ratios, due to observed within-site variations and unaccounted effects of downstream merge geometry. To overcome these limitations, merge ratios were formulated based on their site-specific lane flow distribution (LFD), the proportion of flow in each freeway lane, for two types of merge geometries. Results demonstrate that the proposed methods are able to improve merge ratio estimates, reproduce within-site variations of merge ratio, and represent more effectively disproportionate redistribution of merging flow for merges where vehicles compete directly to merge due a downstream lane reduction.

Second, this research investigates lane-specific traffic behavior through empirical analysis and statistical modeling of lane flow distribution. Lane-specific traffic behavior is also an important component in evaluating freeway performance and has a significant impact in the mechanism of queue evolution, particularly around merges, and bottleneck discharge rate. In this research, site-specific linear LFD trends of three-lane congested freeways were investigated and modeled. A large-scale data collection process was implemented to systematically characterize the effects of several traffic and geometric features of freeways in the occurrence of between-site LFD variations. Also, an innovative three-stage modeling framework was used to model LFD behavior using multiple logistic regression to describe between-site LFD variations and Dirichlet regression to model recurrent combinations of linear LFD trends. This novel approach is able to represent both between and within site variations of LFD trends better, while accounting for the unit-sum constraint and distribution assumptions inherent of proportions data. Results revealed that proximity to freeway merges, a site’s level of congestion, and the presence of HOV lanes are significant factors that influence site-specific recurrent LFD behavior.

Findings from this work significantly improve the state-of-the-art knowledge on merging and lane-specific traffic behavior, which can help to improve traffic operations and reduce traffic congestion in freeways.

Contributors

Agent

Created

Date Created
  • 2015

153221-Thumbnail Image.png

A tour level stop scheduling framework and a vehicle type choice model system for activity based travel forecasting

Description

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that simulate individual daily activity-travel patterns through the prediction of day-level and tour-level activity agendas. These tour level activity-based models adopt a discrete time representation of activities and sequence the activities within tours using rule-based heuristics. An alternate stream of activity-based model systems mostly confined to the research arena are activity scheduling systems that adopt an evolutionary continuous-time approach to model activity participation subject to time-space prism constraints. In this research, a tour characterization framework capable of simulating and sequencing activities in tours along the continuous time dimension is developed and implemented using readily available travel survey data. The proposed framework includes components for modeling the multitude of secondary activities (stops) undertaken as part of the tour, the time allocated to various activities in a tour, and the sequence in which the activities are pursued.

Second, the dissertation focuses on the implementation of a vehicle fleet composition model component that can be used not only to simulate the mix of vehicle types owned by households but also to identify the specific vehicle that will be used for a specific tour. Virtually all of the activity-based models in practice only model the choice of mode without due consideration of the type of vehicle used on a tour. In this research effort, a comprehensive vehicle fleet composition model system is developed and implemented. In addition, a primary driver allocation model and a tour-level vehicle type choice model are developed and estimated with a view to advancing the ability to track household vehicle usage through the course of a day within activity-based travel model systems. It is envisioned that these advances will enhance the fidelity of activity-based travel model systems in practice.

Contributors

Agent

Created

Date Created
  • 2014

153367-Thumbnail Image.png

A systems approach to understanding and mitigating barriers to travel accessibility and well-being in the West Bank, Palestine

Description

The conflict conditions that afflict the livelihoods of Palestinian residents living in the West Bank are embedded within the population's ability to travel more so than any other routine activity.

The conflict conditions that afflict the livelihoods of Palestinian residents living in the West Bank are embedded within the population's ability to travel more so than any other routine activity. For Palestinian residents, domestic and international travel is a process of following paths riddled with multiple barriers that are both physical and political. Past studies have done well to paint a clear picture of the harsh transportation landscape in the region. However, less attention has focused on how barriers interact to indirectly and directly affect levels of accessibility and well-being. Additionally, suggested development solutions are rarely capable of being successfully implemented given current political conditions. This dissertation uses a systems approach to understand drivers of accessibility challenges in the West Bank and uses the understanding to propose a method to identify transition strategies that may be presently initiated whilst maintaining the ability to provide adequate benefit. The research question informing the study asks, How do drivers influencing the issue of poor accessibility and well-being in the West Bank persist and interact, and how might solutions be approached? The dissertation approaches the question in four sequential actions that each produces a functional planning deliverable. First, a system map that depicts the drivers and influences to the problem of poor accessibility and well-being is constructed (Chapter 4). Second, a future vision for the transportation system in the West Bank is identified (Chapter 5). Third, the system map and vision are used to assess how conflict conditions affect transition research (Chapter 6). Finally, the previous three deliverables are used to suggest a guide for transition management for transportation development in the West Bank (Chapter 7). Combinations of four different data sets, including an extensive review of published literature, field observations, individual field expert interviews, and group commuter interviews inform the research. Additionally, the Transformational Sustainability Research framework provides a normative base for the steps taken throughout the research. Ultimately, the dissertation presents an interpretation of information that has theoretical and practical application potential in transformational sustainability research and development efforts in the region respectively.

Contributors

Agent

Created

Date Created
  • 2015

153861-Thumbnail Image.png

The transition to alternative fuel vehicles (AFVs): an analysis of early adopters of natural gas vehicles and implications for refueling infrastructure location methods

Description

Alternative fuel vehicles (AFVs) have seen increased attention as a way to reduce reliance on petroleum for transportation, but adoption rates lag behind conventional vehicles. One crucial barrier to their

Alternative fuel vehicles (AFVs) have seen increased attention as a way to reduce reliance on petroleum for transportation, but adoption rates lag behind conventional vehicles. One crucial barrier to their proliferation is the lack of a convenient refueling infrastructure, and there is not a consensus on how to locate initial stations. Some approaches recommend placing stations near where early adopters live. An alternate group of methods places stations along busy travel routes that drivers from across the metropolitan area traverse each day. To assess which theoretical approach is most appropriate, drivers of compressed natural gas (CNG) vehicles in Southern California were surveyed at stations while they refueled. Through GIS analysis, results demonstrate that respondents refueled on the way between their origins and destinations ten times more often than they refueled near their home, when no station satisfied both criteria. Freeway interchanges, which carry high daily passing traffic volumes in metropolitan areas, can be appropriate locations for initial stations based on these results. Stations cannot actually be built directly at these interchange sites, so suitable locations on nearby street networks must be chosen. A network GIS method is developed to assess street network locations' ability to capture all traffic passing through 72 interchanges in greater Los Angeles, using deviation from a driver's shortest path as the metric to assess a candidate site's suitability. There is variation in the ability of these locations to capture passing traffic both within and across interchanges, but only 7% of sites near interchanges can conveniently capture all travel directions passing through the interchange, indicating that an ad hoc station location strategy is unlikely to succeed. Surveys were then conducted at CNG stations near freeway interchanges to assess how drivers perceive and access refueling stations in these environments. Through comparative analysis of drivers' perceptions of stations, consideration of their choice sets, and the observed frequency of the use of a freeway to both access and leave these stations, results indicate that initial AFV stations near freeway interchanges can play an important role in regional AFV infrastructure.

Contributors

Agent

Created

Date Created
  • 2015

An optimization model for timetabling and vehicle assignment for urban bus systems

Description

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.

Contributors

Agent

Created

Date Created
  • 2014