Matching Items (3)
Description
Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth.
ContributorsOverstreet, Cynthia K (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica (Committee member) / Buneo, Christopher (Committee member) / Otto, Kevin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011
150144-Thumbnail Image.png
Description
In the past decade, research on the motor control side of neuroprosthetics has steadily gained momentum. However, modern research in prosthetic development supplements a focus on motor control with a concentration on sensory feedback. Simulating sensation is a central issue because without sensory capabilities, the sophistication of the most advanced

In the past decade, research on the motor control side of neuroprosthetics has steadily gained momentum. However, modern research in prosthetic development supplements a focus on motor control with a concentration on sensory feedback. Simulating sensation is a central issue because without sensory capabilities, the sophistication of the most advanced motor control system fails to reach its full potential. This research is an effort toward the development of sensory feedback specifically for neuroprosthetic hands. The present aim of this work is to understand the processing and representation of cutaneous sensation by evaluating performance and neural activity in somatosensory cortex (SI) during a grasp task. A non-human primate (Macaca mulatta) was trained to reach out and grasp textured instrumented objects with a precision grip. Two different textures for the objects were used, 100% cotton cloth and 60-grade sandpaper, and the target object was presented at two different orientations. Of the 167 cells that were isolated for this experiment, only 42 were recorded while the subject executed a few blocks of successful trials for both textures. These latter cells were used in this study's statistical analysis. Of these, 37 units (88%) exhibited statistically significant task related activity. Twenty-two units (52%) exhibited statistically significant tuning to texture, and 16 units (38%) exhibited statistically significant tuning to posture. Ten of the cells (24%) exhibited statistically significant tuning to both texture and posture. These data suggest that single units in somatosensory cortex can encode multiple phenomena such as texture and posture. However, if this information is to be used to provide sensory feedback for a prosthesis, scientists must learn to further parse cortical activity to discover how to induce specific modalities of sensation. Future experiments should therefore be developed that probe more variables and that more systematically and comprehensively scan somatosensory cortex. This will allow researchers to seek out the existence or non-existence of cortical pockets reserved for certain modalities of sensation, which will be valuable in learning how to later provide appropriate sensory feedback for a prosthesis through cortical stimulation.
ContributorsNaufel, Stephanie (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica J (Thesis advisor) / Buneo, Christopher A (Committee member) / Robert, Jason S (Committee member) / Arizona State University (Publisher)
Created2011